LKP2075 系列 低噪声线性稳压器 产品说明书

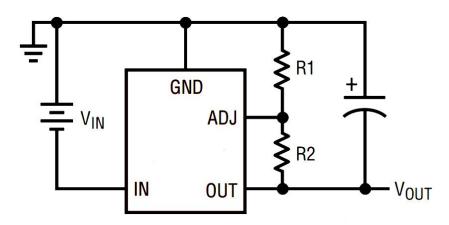
具有低噪声、低压差的 LKP2075 系列 线性稳压器 (LDO)

1 特点

- 可调输出电压: -1.22V~-20V
- 固定输出电压: -5.0V
- 输出电流: 200mA
- 低静态电流: 30μA
- 低压差: 340mV
- 低噪声: 30μVRMS (10Hz~100kHz)
- 关断状态下的静态电流: 3μA
- 最小输出电容可以为 1uF
- 具备限流,热限制保护功能
- 封装形式:

SOT23-5 (2.90mm×2.80mm×1.25mm)塑封 DFN8(3.00mm×3.00mm×0.75mm)塑封

2 应用


- 电池供电型仪器
- 用于噪音敏感型仪表的低噪声稳压器
- LDO 系列的配套负电压稳压器

3 概述

LKP2075 是一系列低噪声、快速瞬态响应 低压差负压 LDO。能够提供 200mA 输出电流, 采用 1uF 小型陶瓷输出电容便能实现稳压工作, 无需增加 ESR。具有关断功能、短路限流保护和 热关断保护功能。

器件信息

	型号	封装	封装尺寸
L	KP2075ST-ADJ	SOT23-5	2.90mm×2.80mm×1.25mm
	LKP2075ST-5	SOT23-5	2.90mm×2.80mm×1.25mm
Li	KP2075DN-ADJ	DFN8	3.00mm×3.00mm×0.75mm
]	LKP2075DN-5	DFN8	3.00mm×3.00mm×0.75mm

 V_{OUT} =-1.22V(1+R2/R1)-(I_{ADJ})(R2)

 $V_{ADJ}=-1.22V$

 $I_{ADJ}=30nA@25^{\circ}C$

注: R1 的取值应小于 250K Ω

图 1 LKP2075ST/DN-ADJ 典型应用电路图

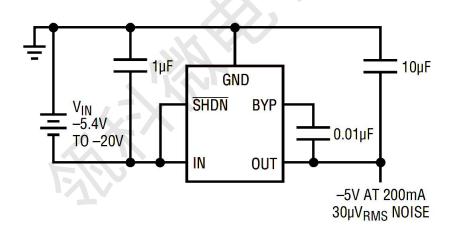


图 2 LKP2075ST/DN-5 典型应用电路图

目 录

1 特点	 2
2 应用	2
3 概述	2
4 管脚排布与功能描述	 1
4.1 引脚排列	 1
5 电特性	 2
5.1 绝对最大额定值	 2
5.2 推荐工作条件	2
5.3 热性能信息	 2
5.4 电特性	2
7.2 典型应用(可调电压版本)	5
7.3 输出负载注意事项	5
7.6 计算结温	7
8 封装形式(SOT23-5)	 7
封装形式 (DFN8)	8
9 机械、包装和可订购的信息	 8
9.1 载带和卷盘信息	9
9.2 订货信息	10
10 版末依江	1.1

4 管脚排布与功能描述

4.1 引脚排列

图 3 LKP2075ST-ADJ 引脚排列图(顶视图)

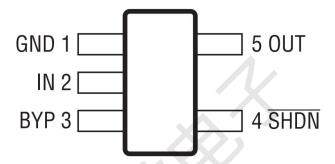


图 4 LKP2075ST-5 引脚排列图 (顶视图)

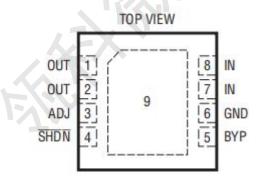


图 5 LKP2075DN-ADJ/5 引脚排列图 (顶视图)

表 1 引脚说明

符号	功能描述
GND	接地端
IN	输入电压, 应连接一个 1μF~10μF 范围内的旁路电容到 GND,且尽可能靠近 IN 引脚放置
SHDN	关断端,低电平有效。若不使用关断功能,可将 SHDN#连接到 IN 引脚
OUT	输出电压,建议连接一个至少 1μF 的电容到 GND,且尽可能靠近 OUT 引脚放置
ADJ	可调输入端,通过连接外部电阻调节输出电压,且外部电阻应尽可能靠近该引脚放置

LkwIC

瓴科微(上海)集成电路有限责任公司 Link Micro (Shanghai) Integrated Circuit Co., Ltd

符号	功能描述		
ВҮР	降噪端,接一个电容到 OUT 引脚,可降低输出电压的噪声。若不使用降噪功能,此引脚必须悬空		
散热焊盘	增强散热性能。为确保正常工作,应将裸露焊盘连接至电路板的接地层。		

5 电特性

5.1 绝对最大额定值

参数	符号	最小值	最大值	单位
VIN 到 GND	V _{IN}	+0.3	-20	V
SHDN#到 IN	-	-0.5	35	V
SHDN#到 GND	-	-20	15	V
ADJ 到 IN	-	+0.5	20	V
贮存温度	T_{STG}	-65	+150	°C
引脚焊接温度 (5s)	T_h	240	250	°C
结温	T.	-	+125	°C
妇伽	T_{j}	-	+150	°C

注: 超过绝对最大额定值的压力可能会对设备造成永久性损坏。暴露于任何绝对最大额定值设置时间过长,可能会影响设备的可靠性和使用寿命。LKP2075DN-ADJ/5 T_j 额定最大值为+125℃,LKP2075ST-ADJ/5 T_j 额定最大值为+150℃。

5.2 推荐工作条件

参数	符号	最小值	最大值	单位
固定输出电压	W		5	V
可调输出电压	$ m V_{OUT}$	-1.22	-20	V
工作温度	T _A	-40	+125	°C

5.3 热性能信息

H. 114 1-	LKP2075DN-ADJ/5	× /).
热指标	8个引脚	单位
R _{0JA} 结至环境热阻	40	°C/W
R _{0Jc} 结至外壳热阻	16	°C/W

热指标	LKP2075ST-ADJ/5	单位	
然行日初	5 个引脚	+ 匹	
R _{0JA} 结至环境热阻	125~250	°C/W	

注: 结对环境的实际热阻(θJA)将是电路板布局的函数。

5.4 电特性

若无特殊说明,测试条件为 T_A = 25℃

瓴科微(上海)集成电路有限责任公司 Link Micro (Shanghai) Integrated Circuit Co., Ltd

参数	符号	测试条件	最小值	典型值	最大值	单位	
固定版本输出电压 1,2	$ m V_{OUT}$	$-20V < V_{IN} < -6V$, $-200 \text{mA} < I_{LOAD} < -1 \text{mA}$	-4.85	-5	-5.15	V	
可调版本输出电压 1,2		- 20V <v<sub>IN< - 2.8V, - 200mA<i<sub>LOAD< - 1mA</i<sub></v<sub>	-1.184	-1.22	-1.256	V	
固定版本线性调整率	A37 /A37	$\Delta V_{IN} = -5.5V \sim -20V, I_{LOAD} = -1 \text{mA}$	-	15	50	mV	
可调版本线性调整率	$\Delta V_{OUT} / \Delta V_{IN}$	$\Delta V_{IN} = -2.8V \sim -20V$, $I_{LOAD} = -1 \text{mA}$	-	1	12	mV	
固定版本负载调整率	A37 /AI	$V_{IN} = -6V, \Delta I_{LOAD} = -1 \text{ mA} \sim -200 \text{ mA}$	-	-	50	mV	
可调版本负载调整率	$\Delta V_{OUT} / \Delta I_{OUT}$	$V_{IN} = -2.8V, \Delta I_{LOAD} = -1 \text{ mA} \sim -200 \text{mA}$	-	-	15	mV	
		$I_{LOAD} = -1 mA$	-	-	0.19		
L	V	$I_{LOAD} = -10 \text{mA}$	-	-	0.25		
压左 3	$ m V_{DO}$	$I_{LOAD} = -100 \text{mA}$	-	-	0.39	V	
		$I_{LOAD} = -200 \text{mA}$	-	-	0.49		
		$I_{LOAD} = 0 mA$	-	30	70	μA	
		$I_{LOAD} = -1 mA \qquad \qquad -$ $I_{LOAD} = -10 mA \qquad \qquad -$	-	85	180	μΑ	
GND 端电流	I_{GND}		-	300	600	μΑ	
		$I_{LOAD} = -100 \text{mA}$	-	1.3	3	mA	
		$I_{LOAD} = -200 \text{mA}$	-	2.5	6	mA	
输出电压噪声	$V_{ m NOISE}$	$C_{OUT}=10\mu F,~C_{BYP}=0.01\mu F,$ $I_{LOAD}=-200mA,~BW=10Hz\sim100kHz$	-	30	-	μV_{RMS}	
ADJ 引脚偏置电流 ⁴	I_{B}		-	30	100	nA	
最小输入电压	V_{min}	I _{LOAD} =-200mA	-	-1.6	-2.2	V	
		V _{OUT} = Off~On(正电压输出)	-	1.6	2.1		
关 断阈值电压	$ m V_{ST}$	V _{OUT} = Off~On(负电压输出)	-	-1.9	-2.8		
八切內诅圯止	v ST	V _{OUT} = On~Off(正电压输出)	0.25	0.8	-	V	
$V_{OUT} = On \sim$		V _{OUT} = On~Off(负电压输出)	-0.25	-0.8	-		
关断状态下的静态电流	I_{SD}	$V_{IN} = -6V$, $V_{SHDN} = 0V$	-	3	20	μΑ	
波纹抑制	-	$V_{\text{IN}} - V_{\text{OUT}} = -1.5 \text{V (Avg)}, V_{\text{RIPPLE}} = 0.5 V_{\text{P-P}}$ $f_{\text{RIPPLE}} = 120 \text{Hz}, I_{\text{LOAD}} = -200 \text{mA}, T_{\text{A}} = 25 ^{\circ}\text{C}$	46	54	-	dB	

注:

- 1. 工作条件受最大结温的限制。稳压输出电压规格不适用于输入电压和输出电流的所有可能组合。在最大输入电压下工作时,必须限制输出电流范围。在最大输出电流下工作时,必须限制输入电压范围。
 - 2. 输入输出差电压大于 7V 时, 需要 50μA 负载维持稳压。
 - 3. 降电压是在指定输出电流下维持稳压所需的最小输入输出电压差。在 dropout 中,输出电压将等于:(VIN + VDROPOUT)。
 - 4. ADJ 引脚偏置电流从 ADJ 引脚流出。

6 特性曲线

若没有其他说明, T_A=25℃

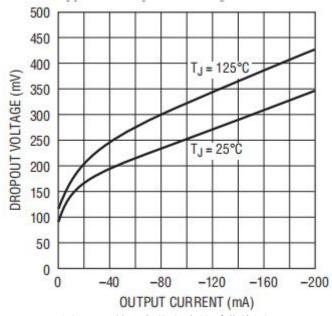


图 6 压差和负载电流关系曲线图

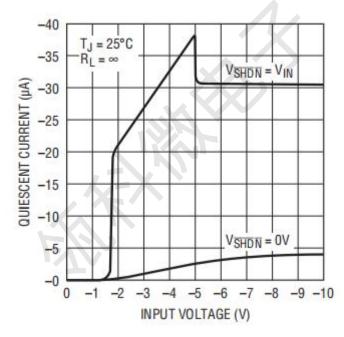


图 7 静态电流和输入电压关系曲线图(LKP2075ST-5)

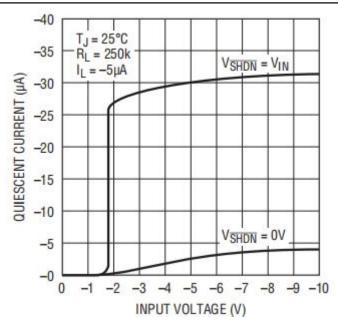
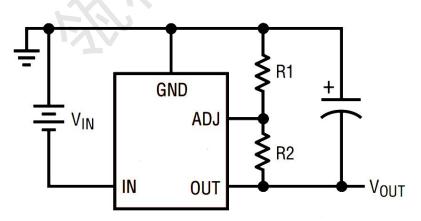


图 8 静态电流和输入电压关系曲线图(LKP2075ST-ADJ)


7 应用信息

7.1 功能描述

LKP2075 系列是一个 200mA 负低差稳压器,具有微功率静态电流和关机功能。该装置能够在 340mV 的压降电压下提供 200mA 的电流。在 10Hz \sim 100kHz 的带宽范围内,通过增加一个 0.01µF 的参考旁路电容,可以将输出电压噪声降低到 30µVRMS。LKP2075 系列还结合了几种保护功能,使其成为电池供电系统的理想选择。

7.2 典型应用(可调电压版本)

LKP2075 系列可调版本的输出电压可以设置在-1.22V 到-20V 范围。从 ADJ 引脚连接电阻 R1 到 GND,连接电阻 R2 到 VOUT。

 $V_{OUT} = -1.22V(1+R2/R1)-(I_{ADJ})(R2)$

 $V_{ADJ}=-1.22V$

I_{ADJ}=30nA@25°C

图 9 典型应用

7.3 输出负载注意事项

PCB 布线时建议走线长度要短,输入输出电容应尽可能的靠近芯片管脚处,保证芯片底部的散热焊盘与 PCB 板的

接地层连接。

7.4 旁路电容和低噪声性能

LKP2075 可以与从 VOUT 到 BYP 引脚的旁路电容一起使用,以降低输出电压噪声。建议选用质量好的低漏电容。通过添加 0.01μF 的旁路电容,可将输出电压噪声降低至 30μVRMS。使用旁路电容器有改善瞬态响应的额外好处。在 无旁路电容和 10μF 输出电容的情况下,-10mA 至-200mA 负载阶跃在 100μs 内稳定在其最终值的 1%以内。通过添加 0.01μF 旁路电容,在相同的-10mA 至-200mA 负载阶跃下,输出将保持在 1%以内。然而稳压器启动时间与旁路电容的大小成正比,过大的旁路电容会导致稳压器启动缓慢。

7.5 输出电容和瞬态响应

输出电容的 ESR 影响稳定性,尤其是小电容。建议最小输出电容为 1μF, ESR 为 3Ω或更低,以防止振荡。 LKP2075 是一个微功率器件,输出瞬态响应将是输出电容的函数。较大的输出电容值可以减小峰值偏差,并为较大的负载电流变化提供更好的瞬态响应。

必须特别考虑陶瓷电容器的使用。陶瓷电容器是用各种介质制造的,每种介质在温度和施加电压下都有不同的性能。最常用的 Z5U、Y5V、X5R 和 X7R。Z5U 和 Y5V 适用于小封装的应用环境中,但它们往往具有强电压和温度系数,如图 10 和 11 所示。当与 5V 稳压器一起使用时,在工作温度范围内施加的直流偏置电压的有效电容值可低至 1μF 至 2μF。X5R 和 X7R 具有更稳定的特性,更适合用作输出电容。X7R 类型在温度范围内具有更好的稳定性,而 X5R 更便宜,可提供更高的值。X5R 和 X7R 指定工作温度范围和最大电容值随温度变化比 Y5V 和 Z5U 电容器好。随着元件外壳尺寸的增大,电容器的直流偏置特性趋于改善,但应验证工作电压下的预期电容。

电压和温度系数并不是问题的唯一来源。有些陶瓷电容器具有压电响应。由于机械应力,压电装置在其两端产生电压,类似于压电加速度计或麦克风的工作方式。对于陶瓷电容器,应力可以由系统中的振动或热瞬态引起。

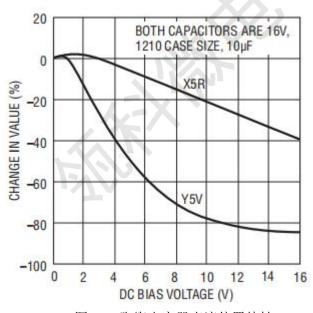


图 10 陶瓷电容器直流偏置特性

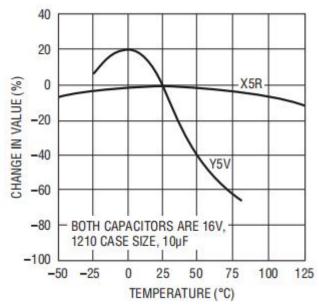


图 11 陶瓷电容器温度特性

7.6 计算结温

例:给定输出电压为-5V,输入电压范围为-6V 至-8V,输出电流范围为 0mA 至-100mA,最大环境温度为 50℃,最大结温是多少?

器件耗散的功率将等于:

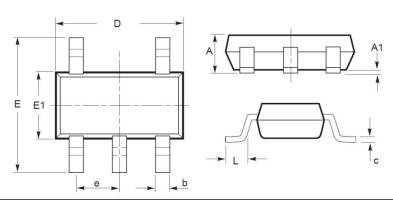
IOUT(MAX) • (VIN(MAX) – VOUT) + (IGND • VIN(MAX))

IOUT(MAX) = -100mA

VIN(MAX) = -8V

IGND at (IOUT = -100mA, VIN = -8V) = -2mA

 $P = -100 \text{mA} \cdot (-8V + 5V) + (-2\text{mA} \cdot -8V) = 0.32W$

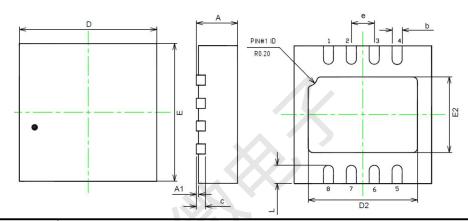

根据铜面积的不同,SOT-23 封装的热阻(结对环境)将在 125℃/W 至 150℃/W 的范围内。高于环境温度的温度升高将近似等于:

 $0.32W \cdot 140^{\circ}C/W = 44.2^{\circ}C$

最高结温将等于高于环境温度的最高结温加上最高环境温度:

 $TJMAX = 50^{\circ}C + 44.2^{\circ}C = 94.2^{\circ}C$

8 封装形式(SOT23-5)

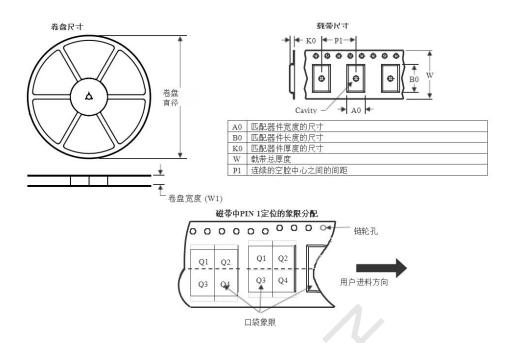


尺寸符号		数值: mm		
八寸付亏	最小	公称	最大	
A	-	-	1.25	

LkwIC 統科微(上海)集成电路有限责任公司 Link Micro (Shanghai) Integrated Circuit Co., Ltd

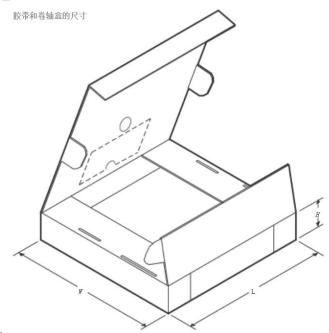
口上炊口		数值: mm			
尺寸符号	最小	公称	最大		
A1	-	-	0.10		
ь	0.34	0.40	0.46		
c	0.13	0.15	0.17		
D	2.70	2.90	3.10		
Е	2.50	2.80	3.10		
E1	1.40	1.60	1.80		
e	0.95BSC				
L	0.30	-	0.60		

封装形式(DFN8)


口→炊口		数值: mm	
尺寸符号	最小	公称	最大
A	0.70	0.75	0.80
A1	-1	-	0.05
ь	0.15	-	0.30
С	.77.	0.20	-
D	2.80	3.00	3.20
D2	2.1	2.3	2.50
Е	2.80	3.00	3.20
E2	1.5	1.65	1.8
e	0.5BSC		
L	0.28	0.38	0.48

9 机械、包装和可订购的信息

以下页面包括机械、包装和可订购的信息。



9.1 载带和卷盘信息

*所有尺寸均为标称尺寸

器件	封装	引脚数	卷盘直径(mm)	卷盘宽度 W1 (mm)	AO (mm)	BO (mm)	KO (mm)	P1 (mm)	W (mm)	引脚1象限
LKP2075ST-ADJ	S0T23-5	5	179	8. 4	3. 3	3.3	1.4	4.0	8.0	Q3
LKP2075ST-5	S0T23-5	5	179	8.4	3. 3	3.3	1.4	4.0	8.0	Q3
LKP2075DN-ADJ	DFN8	8	330	12. 4	3. 3	3.3	1.1	8. 0	12.0	Q2
LKP2075DN-5	DFN8	8	330	12. 4	3. 3	3. 3	1.1	8. 0	12.0	Q2

*所有尺寸均为标称尺寸

					N
器件	封装	引脚数	长度 (mm)	宽度 (mm)	高度(mm)
LKP2075ST-ADJ	SOT23-5	5	213.0	191.0	35.0
LKP2075ST-5	SOT23-5	5	213.0	191.0	35.0
LKP2075DN-ADJ	DFN8	8	367.0	367.0	35.0
LKP2075DN-5	DFN8	8	367.0	367.0	35.0

9.2 订货信息

<u>LK</u>	<u>P</u>	<u>2075</u>	ST/DN	<u>ADJ/5</u>
1	2	3	4	(5)

- ① 产品系列代号
- ② 分类标识
- ③ 产品代号
- ④ 封装形式
- ⑤ 输出电压形式

表 2 订货信息表

型号	封装	质量等级	工作温度	
LKP2075ST-ADJ	SOT23-5,塑料封装	工业级	-40°C∼+125°C	
LKP2075ST-5	SOT23-5, 塑料封装	工业级	-40°C∼+125°C	
LKP2075DN-ADJ	DFN8,塑料封装	工业级	-40°C∼+125°C	
LKP2075DN-5	DFN8,塑料封装	工业级	-40°C∼+125°C	

10 版本修订

版本号	日期	版本说明	更改说明
REV 1.00	2024-06-12	更新版本	

