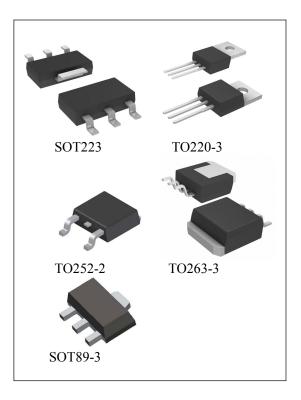
TDSEMIC

AMS1117 1.0A 低压差线性稳压器

概述:


AMS1117是一款低压差线性稳压电路,该电路输出电流能力为1.0A。该系列电路包含固定输出电压版本和可调输出电压版本,其输出电压精度为±1.5%。为了保证芯片和电源系统的稳定性,AMS1117内置热保护和电流限制保护功能,同时产品采用了修正技术,保证了输出电压精度控制在±1.5%的范围内。

AMS1117采用 SOT223、TO252-2、TO220-3、TO263-3、

SOT89-3的封装形式封装。

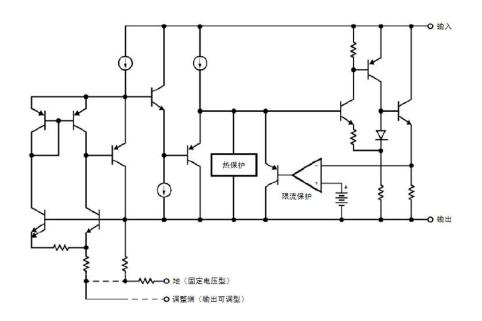
主要特点:

- 只需外接两个电阻,可调型输出电压能在 1.25V 到 13.8V 调节
- 固定电压型输出 1.2V、1.8V、2.5V、2.85V、3.3V 和 5.0V
- 输出电流能力 1.0A
- 输出电压精度±1.5%
- 工作电压高达 15V
- 电压线性度小于 0.2%
- 负载调整率小于 0.4%

包装信息:

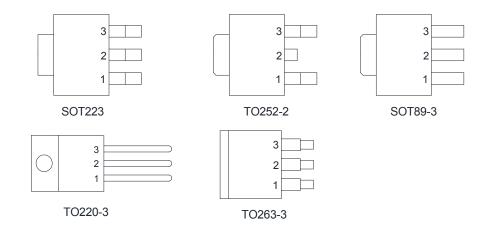
型号	封装形式	打印方式	包装方式
AMS1117-XXC	SOT223	AMS1117 XXXX XXC	2500 只/盘
AMS1117B-XX	TO252-2	AMS1117 XX XXX	70 只/管 2500 只/盘
AMS1117T-XX	TO220-3	AMS1117 XX SXXXX	50 只/管
AMS1117S-XX	TO263-3	AMS1117 XX SXXXX	50 只/管 800 只/盘
AMS1117L-XX	SOT89-3	AMS1117 XX XXXX	1000 只/盘

http://www.tdsemic.net


型号	封装形式	打印方式	包装方式
AMS1117-ADJ	SOT223	1117 XXXX ADC	2500 只/盘
AMS1117B-ADJ	TO252-2	1117B ADJ XXX	70 只/管 2500 只/盘
AMS1117T-ADJ	TO220-3	1117T ADJ SXXXX	50 只/管
AMS1117S-ADJ	TO263-3	1117S ADJ SXXXX	50 只/管 800 只/盘
AMS1117L-ADJ	SOT89-3	1117L ADJ XXXX	1000 只/盘

为商标, AMS1117为产品名, B/T/S/L 为封装形式代码, XXX/XXXX/SXXXX 为周号, XX:12(1.2V)/18(1.8V)/25(2.5V)/285(2.85V)/33(3.3V)/50(5.0V), ADC/ADJ:ADJ 为电压版本。

应用:


- 计算机主板和显卡电源管理
- LCD 监视器及 LCD TV
- DVD 解码板
- ADSL 调制解调器
- 开关电源后级稳压器

功能框图:

管脚排列图:

管脚描述:

管脚号	管脚名称	功能描述
1	GND	地
2	Vout	输出端
3	Vin	输入端

-	古	[定	由	压	型

管脚号	管脚名称	功能描述
1	Adj	可调端
2	Vout	输出端
3	Vin	输入端

可调电压型

极限值参数: (Ta=25℃)

参数名称	符号	数 值	单位
最大输入电压	Vin	18	V
结温	T _J	150	°C
环境温度	T _A	140	°C
贮存温度	Ts	- 65∼ +150	°C
焊接温度和时间		300°C,10S	

热阻值:

参数名称	符号	条件	SOT223	TO252-2	TO220-3	TO263-3	SOT89-3	单位
热阻(结-环境)	θ-ЈА	无散热片	120	100	60	60	165	°C/W

推荐工作条件: (Ta=25°℃)

参数名称	最小	最大	单位
输入电压范围		15	V
环境温度	-40	125	°C

电特性: (若无特殊说明, Ta=25°C)

会料力场	符号	기대 노스 전 (ALL	规范值			安
参数名称	গ্য 🕏	测试条件	最小	典型	最大	単位
基准电压	Vref	Iout=10mA, Vin-Vout=2V 10mA≤Iout≤1.0A,1.4V≤Vin-Vout≤12V	1.231 1.225	1.250 1.250	1.269 1.275	V
		D1117-1.20V Iout=10mA,Vin=3.2V 0≤Iout≤1.0A,3.0V≤Vin≤12V	1.182 1.176	1.200 1.200	1.218 1.224	V
		D1117-1.50V Iout=10mA,Vin=3.5V 0≤Iout≤1.0A,3.0V≤Vin≤12V	1.477 1.470	1.500 1.500	1.523 1.530	V
		D1117-1.80V Iout=10mA,Vin=3.8V 0≤Iout≤1.0A,3.2V≤Vin≤12V	1.773 1.764	1.800 1.800	1.827 1.836	V
输出电压	Vout	D1117-2.5V Iout=10mA,Vin=4.5V 0≤Iout≤1.0A,3.9V≤Vin≤12V	2.463 2.450	2.500 2.500	2.537 2.550	V
		D1117-2.85V Iout=10mA,Vin=4.85V 0≤Iout≤1.0A,4.25V≤Vin≤12V	2.807 2.793	2.850 2.850	2.893 2.907	V
		D1117-3.3V Iout=10mA,Vin=5V 0≤Iout≤1.0A,4.75V≤Vin≤12V	3.250 3.234	3.300 3.300	3.350 3.366	V
	Iout	D1117-5V Iout=10mA,Vin=7V 0≤Iout≤1.0A,6.5V≤Vin≤12V	4.925 4.900	5.000 5.000	5.075 5.100	V
电压线性度	LNR	D1117 可调电压型 Iout=10mA,1.4V≤Vin-Vout≤10.75V		0.035	0.2	%
(Note1)		D1117 固定电压型 Iout=10mA, Vout+1.4V≤Vin≤12V		4	12	mV

会举力功	<i>/</i> ** □	Stid 1-12-A7 14-	规范值			单位
参数名称	符号	测试条件		典型	最大	単仏
电压线性度	LND	D1117 可调电压型 Iout=10mA,1.4V≤Vin-Vout≤10.75V		0.035	0.2	%
(Note1)	LNR	D1117 固定电压型 Iout=10mA, Vout+1.4V≤Vin≤12V		4	12	mV
负载调整率	LDD	D1117 可调电压型 Vin-Vout=3V, 10mA≤Iout≤1.0A		0.2	0.4	%
(Note1,2)	LDR	D1117 固定电压型 Vin=Vout+1.4V, 0≤Iout≤1.0A		6	12	mV
		ΔVout, ΔVref=1%,Iout=100mA		1.0	1.2	V
输入输出电压差 (Note3)	Vin-Vout	ΔVout, ΔVref=1%,Iout=500mA		1.05	1.25	V
		ΔVout, ΔVref=1%,Iout=1.0A		1.1	1.3	V
最大负载电流	Ilimit	Vin-Vout=2V, Tj=25°C	1.0	1.4		A
最小负载电流 (Note4)				5	10	mA
静态电流	Iq	D1117 固定电压型 Vin-Vout=1.25V		4	8	mA
可调端电流	Iadj	D1117 可调电压型		55	120	μА
可调端电流变化	Ichange			0.2	5	μΑ
热稳定性	Ts				0.5	%

Note1: 表中所给出的电压线性度和负载调整率参数是在常温下测试的,负载调整率随温度变化曲线请参看后面的典型参数曲线。

Note2: 常温下,当 Iout 从 0 变到 1.0A,Vin-Vout 从 1.4V 变到 12V 时,参数能满足表中给出的规范。若温度从-40℃变到 125℃时,为满足规范,电路需要输出电流大于 10mA。

Note3:输入输出电压差 Vdropout 是在如下条件下测试的,在各种输出电流值下,以 Vin=Vout+1.3V 时的输出电压 Vout 作为输出参考电压值,减小输入电压,当 Vout 的值降低 1%时所对应的输入输出电压差即为 Vdropout。

Note4: 最小负载电流是指当输入电压在如下范围内(1.4V≦Vin-Vout≦12V)变化时,为保证 Vout 的变化在规范范围内,对输出负载电流的要求,即要求负载电流不小于 10mA。

应用概述:

AMS1117是低压差的三端线性稳压电路。该电路外围应用电路简单,固定电压版本只需输入和输出两个电容,可调电压版本只需输入和输出两个电容及两个外接电阻即可工作。芯片内部包括启动电路、偏置电路、带隙基准源电路、过热保护、电流限制和功率管及其驱动电路等模块组成。

当结温超过 125℃或者负载电流大于 1.5A 时,过热保护和电流限制模块能够保证芯片和应用系统安全工作。

AMS1117的带隙模块提供稳定的基准电压,基准电压的温度系数是由设计时精心考虑并进行了补偿,使得芯片的温度漂移系数小于 100ppm/℃。输出电压精度由熔丝修正技术得以保证。

典型应用:

AMS1117有固定版本和可调版本两个输出电压版本。

固定版本输出电压:

固定版本典型应用如图 1 所示:

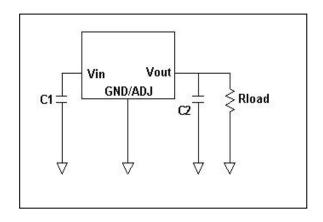


图 1 AMS1117固定电压版本应用电路

可调版本的输出电压:

AMS1117可调电压型提供 1.25V 的基准电压,任何在 1.25 至 13.8V 之间的输出电压可以通过选择两个外接电阻来获得,R1、R2 两个外接电阻连接方法如图 2 所示。

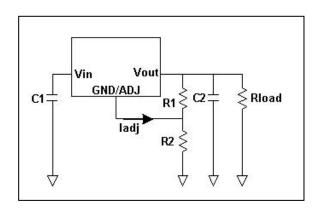


图 2 AMS1117可调型应用电路

应用提示:

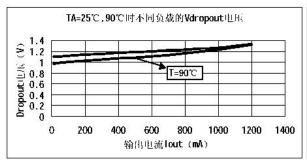
- 1. 对于所有应用电路均推荐使用输入旁路电容 C1 为 10μF 钽电容。
- 2. 为保证电路的稳定性,在输出端到地接 22uF 钽电容 C2。
- 3. 在可调端和地之间接旁路电容 Cadj 能提高电路的纹波抑制比,当输出电压增加时,该旁路电容可以防止纹波被放大。Cadj 的阻抗要小于输出端到调整端电阻 R1 的阻值,这样可以防止任何频率的纹波被放大。R1 的阻值一般在 $200\,\Omega$ 到 $350\,\Omega$ 之间,Cadj 容值应满足以下的公式: 2*Fripple*Cadj<R1。推荐使用 $10\mu F$ 的坦电容。

说明:

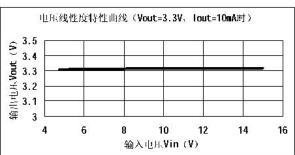
可调版本的输出电压满足下列等式: Vout=Vref*(1+R2/R1)+Iadj*R2,由于 Iadj(50μ A 左右)远小于流过 R1 的电流(4mA 左右),因此可忽略。

R1 值的选取:

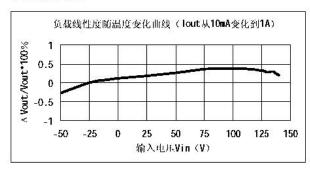
在不接负载的情况下,为保证可调版本电路的正常工作,R1 值应在 200~350Ω之间。为保证表中所列电性能,电路的输出电流应大于 5mA。若 R1 值过大,则电路正常工作的最小输出电流应大于 4mA,为保证电路正常工作,最佳的工作条件是电路输出电流超过 10mA。

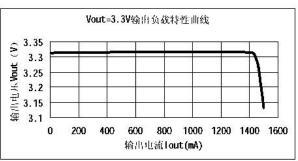

热考虑:

当电路工作在大电流或输入输出压差较大时,我们得考虑电路的散热问题。因为在这种情况下,AMS1117自身消耗的耗散功率是很大的。D1117 使用 SOT-223 封装形式封装,该种封装形式热阻约为 $120\,^{\circ}\text{C/W}$,然而应用 PCB 板的铜箔面积也会影响总热阻。如果铜箔面积等于 5cm*5cm(正反两面)时,该 热阻约为 $30\,^{\circ}\text{C/W}$,因此总热阻为 $30\,^{\circ}\text{C/W}$ ~ $120\,^{\circ}\text{C/W}$ 。所以我们可以通过增加应用板铜箔面积来降低总热阻。

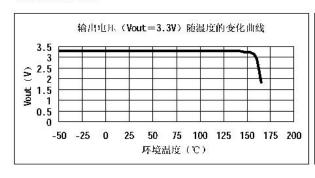


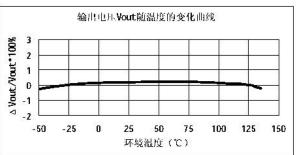
特性曲线:

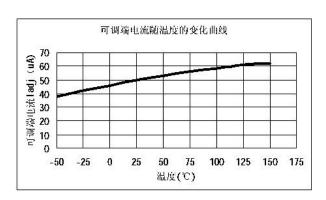

1.不同负载时输入输出电压差特性曲线



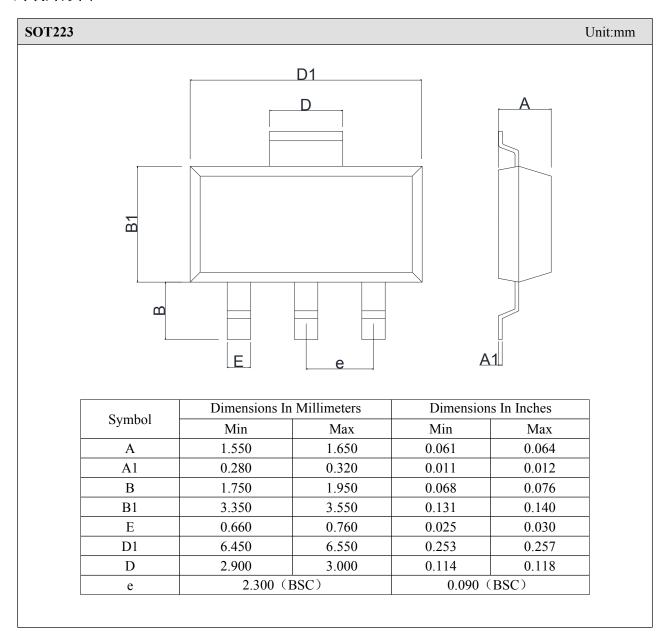
2. 电压线性度特性曲线



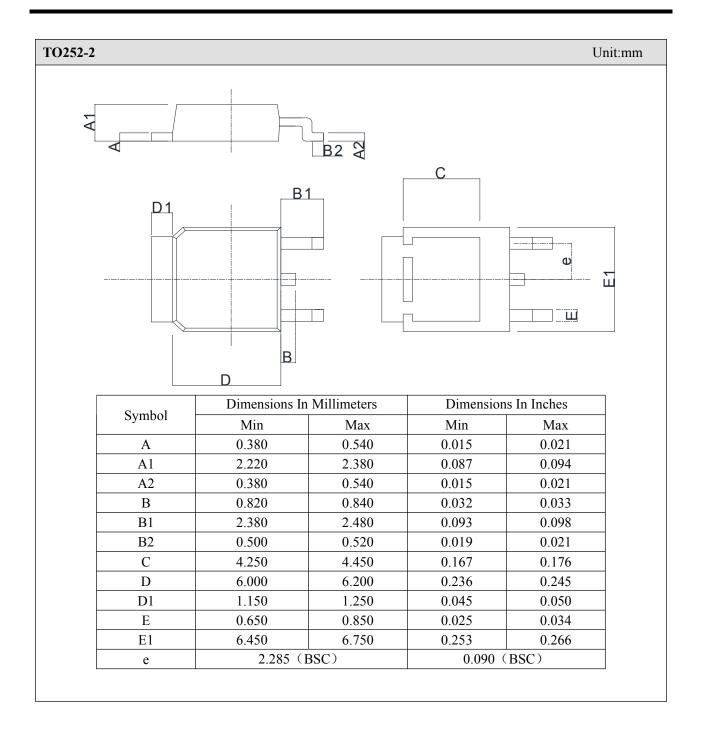

3. 负载特性曲线

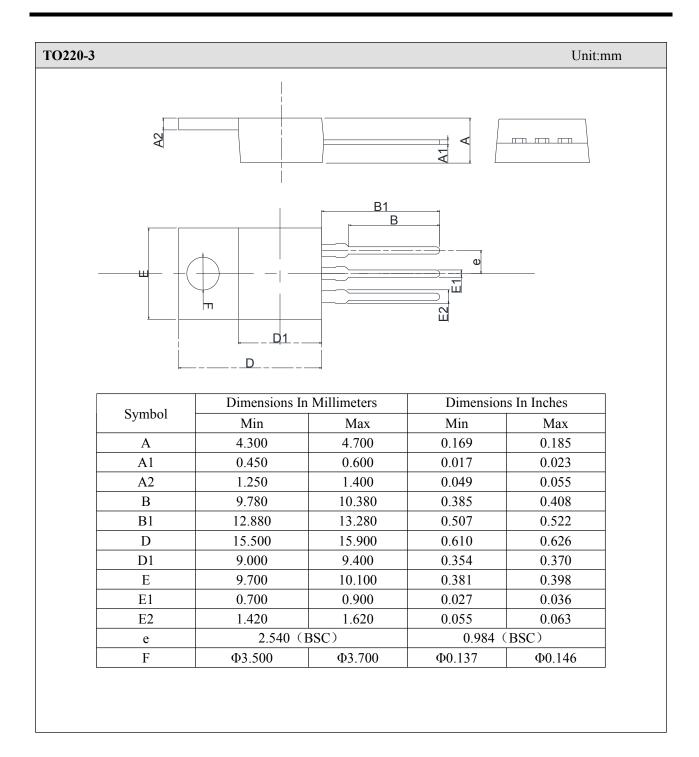


4.温度稳定性曲线



5. 可调端输出电流随温度变化曲线




封装外形图:

