

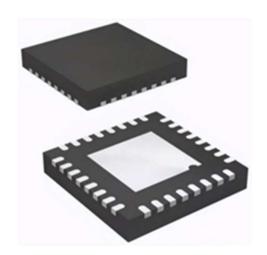
产品规格书

产品名称: 蓝牙透传芯片

产品型号: WJ62_SOC_AT

版本编号: V10

文件编号: YTL-RD-241213002


文档发放历史记录

序号	版本编号	变化状态	变更 (+/-) 说明	作者	日期
1	V10	创建		Song	2024. 12. 13

蓝牙 5.2 BLE 芯片

目录

一、产品简介	5
1.2 特点	5
1.3 应用	5
1.4 基础参数	6
二、应用接口	6
2.1 芯片引脚定义	6
2.2 引脚说明	7
2 · 4 · 节能模式	9
2 ·4·1·低功耗模式1	9
2 4 2 低功耗模式 2	9
2 · 5 · 电源设计	10
2 · 5 · 1 · 电源接口	10
2 · 5 · 2 · 电源稳定性要求	10
2 · 5 · 3 ·电源断电要求	11
2 · 5 · 4· RST 复位脚说明	11
2.6 硬件物理接口	12
2.6.1 UART 接口	12
2.7 参考电路	13
三、电气特性和可靠性	14
3.1 最大额定值	14
3 · 2·工作和存储温度	14
3 ·3.耗流	14
3 · 4 ·射频特性	15
3.5 静电防护	15
四. 机械尺寸及布局建议	
4.1、产品尺寸	15
4.2 硬件设计布局建议	16
4-3 几种常用天线设计	17
五. 储存 生产和包装	
5 · 1 ·存储条件	19
5 · 2 · 烘烤外理	20

5 · 3 ·回流焊	20
六、串口 AT 指令集	21
6.1 串口 AT 指令集	
6.1、 AT 指令说明	22
七、联系我们	23

一、产品简介

芯片基于 WJ32WB6256的蓝牙 5.2协议标准,工作频段为 2.4GHZ 范围,调制方式为 GFSK,最大发射功率为 5db,采用原装芯片设计,内置串口透传带 AT 指令固件,可实现芯片上板快速开发。

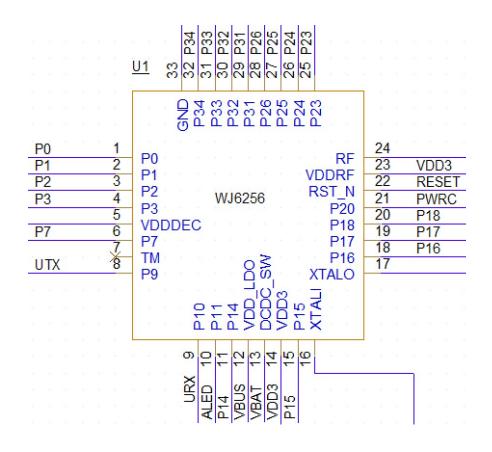
本公司提供芯片功能定制开发服务,如有开发需求,可以联系我司相关人员。

1.2 特点

- WJ32WB6256 低功耗蓝牙芯片
- 蓝牙 BLE5.2 协议
- 传输速率 100kbps
- 体型小, 板载兼容性强
- 支持串口透传
- 支持 AT 指令

1.3 应用

- 智能教育设备
- 医疗设备监测与无线控制
- 智能电表测量与监控系统
- 工业传感 器与控件及智慧工业
- 追踪定位
- 智能穿戴设备
- 智能照明、智能楼宇、智能家居
- 自拍器、防丢器、
- 遥控器、手机外设、
- 电子价签、蓝牙信标



1.4 基础参数

参数名称	详情	参数名称	详情
芯片型号	WJ32WB6256	芯片型号	
蓝牙规格	BLE5.2	芯片尺寸	
工作电压	1.8~ 3.6V	工作电流	5MA
深度睡眠电流	3.3UA	浅睡电流	<100UA
协议	GATT,ATT,GAP	MTU 值	244 字节
灵敏度	-94dbm@0.1%BER	发射功率	5dbm
调制方式	GFSK	频段	2.402GHZ-2.480GHZ
输入阻抗	50 欧姆	跳频和频道	
天线接口		硬件接口	UART
工作温度	-40~+125° C	湿度	10%-95% 非凝结

二 、应用接口

2.1 芯片引脚定义

2.2 引脚说明

引脚序号	引脚名称	引脚功能	说明
1	P0	I/O	RESERVE
2	P1	I/O	RESERVE
3	P2	I/O	RESERVE
4	Р3	I/O	RESERVE
5	VDDEC	内部电源	外接 10NF 电容
6	P7	I/O	RESERVE
7	TM		悬空
8	UTX	串口发送	接从机 RX
9	URX	串口接收	接从机 TX
10	ALED	蓝牙连接状态指 示灯	未连接:低 连接:高
11	P14	I/O	
12	VBAUS	接 5V, 给锂电池 充电	不使用该功能悬 空该引脚
13	VBAT	接电池正极,输 出 4.2V 充电电压	不使用则悬空
14	VDD3	芯片供电	接 3.3V
15	P15	I/O	RESERVE
16	XC1	晶振输入	外接 16M 晶振引 脚

17	XC2	晶振输出	外接 16M 晶振引 脚
18	P16	I/O	RESERVE
19	P17	I/O	RESERVE
20	P18	I/O	RESERVE
21	PWRC	AT 指令控制引脚	1、睡眠唤醒引脚,高电平唤醒。 2、在连接状态下可通过 PWRC 引脚拉低发 AT 指令,拉高不能发 AT 指令,指令。
22	RESET	芯片复位	低电平有效
23	VDDRF	射频电源	与 14 脚相连
24	RF	射频发射	外接天线端
25	P23	I/O	RESERVE
26	P24	I/O	RESERVE
27	P25	I/O	RESERVE
28	P26	I/O	RESERVE
29	P31	I/O	RESERVE
30	P32	I/O	RESERVE
31	P33	蓝牙连接状态输 出	未连接: 高 连接: 低
32	P34	I/O	RESERVE

PAD	底部焊盘	GND	

2 · 4 · 节能模式

2 ·4·1·低功耗模式1

当主机和芯片通过串口连接的时候,可以通过如下步骤使芯片进入低功耗模式1;

- 用 AT+SLEEP1 命令使能低功耗模式 1,芯片可以被发现被连接。
- 发送 200mS 高电平至芯片 21 脚 PWRC,唤醒芯片至正常工作模式。
- 掉电或唤醒后,如需再次进入低功耗模式:需要再次发送 AT+SLEEP1 命令, 注意:重新上电不保存设置的低功耗模式 1 模式。

2 · 4 · 2 · 低功耗模式 2

当主机和芯片通过串口连接的时候,可以通过如下步骤使芯片进入低功耗模式2;

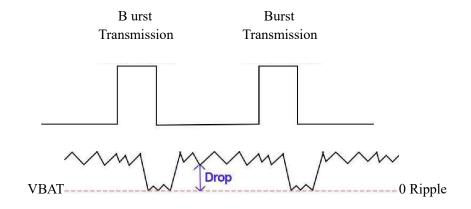
- 用 AT+SLEEP2 命令使能低功耗模式 2
- 低功耗模式 2 情况下,芯片不可被发现被连接。
- 发送 200ms 高电平至 21 脚 PWRC 脚进行唤醒,唤醒芯片至正常工作模式。
- 掉电或唤醒后,如需再次进入模式需发送 AT+SLEEP2 命令。
- 注意: 重新上电不保存设置的低功耗模式 2 模式。
- 硬件请参考下文复位电路。

接线示意:

亚特联 YATELIAN

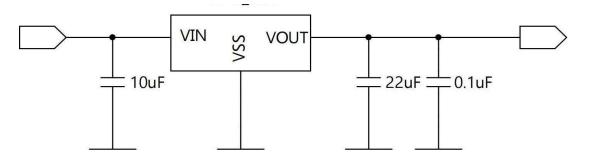
深圳市亚特联科技有限公司

芯片	单片机
VDD	3.3V
PWRC	GPIO
STAT	GPIO
UTX	RX
URX	TX
GND	GND


2.5. 电源设计

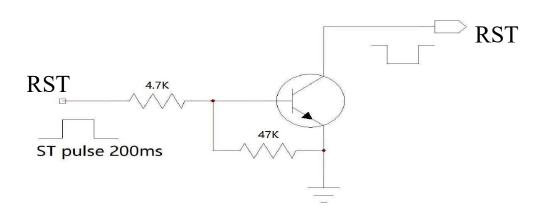
2 · 5 · 1 · 电源接口

引脚名	引脚号	描述	最小值	典型值	最大值	单位
VDD3	14, 23	芯片电源	1.8V	3.3	3.6	V
GND	底部	地		0		V

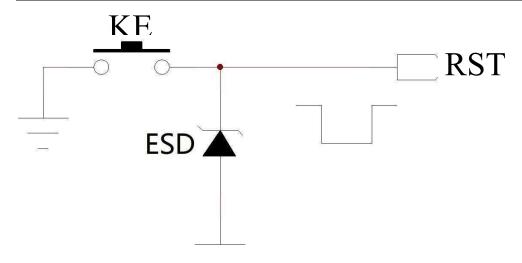

2·5·2·电源稳定性要求

的供电范围为 1.8~3.6V, 需要确保输入电压不低于 1.8V。下图是在射频突发传输时 VBAT 电压跌落情况。

为了减少电压跌落,建议给 VBAT 预留 2个(4.7uF、0.1uF)具有最佳 ESR 性能的片式多层 陶瓷电容(MLCC),且电容靠近 VBAT 引脚放置。参考电路如下·

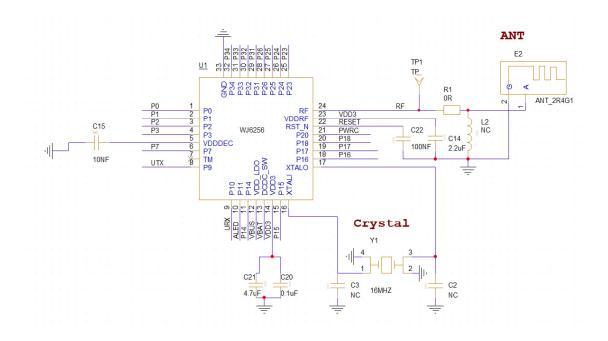

2·5·3·电源断电要求

2 · 5 · 4 · RST 复位脚说明


引脚名	引脚号	I/O	描述	备注
RESET	22	DI	芯片复位	低电平有效

备注

RESET信号对干扰比较敏感,因此建议走线应尽量地短,且需包地处理。


2.6 硬件物理接口

2.6.1 UART 接口

UART 功能:当芯片连接到另一个数字设备时,UART RX 和 UART TX 在两个设备之间传输数据。

参数	可能值			
	最低限度	2400baud (SI%Error)		
波特率	标准	9600baud (SI%Error)		
	最大	115200baud (Sl%Error)		
流量控制	无			
奇偶校验	无,奇或偶			
停止位的数量	1			
每通道的位数	8			

2.7 参考电路

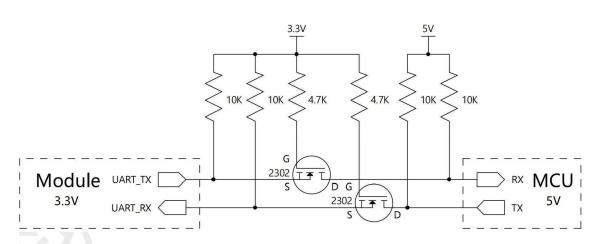


图 13: 串口电平转换参考电路

三、电气特性和可靠性

3.1 最大额定值

绝对最大额定值表

参数	最小值	最大值	单位
VIN-I/O 电源电压(VDDIO)	0.1	+3.6	V
存储温度	0.1	+3.6	V

工作电压表

参数	最小值	典型	最大值	单位
VIN 核心供电	1.8V	3.3V	3.6V	V
电压 (VDD)				
VIN-I/O 电压	1.8V	3.3V	3.6V	°C
(VDDIO)				

3 · 2 · 工作和存储温度

工作和存储温度表

参数	最小值	典型	最大值	单位
正常工作温度	-40	27	125	°C
存储温度	-40	27	125	°C

3 ·3.耗流

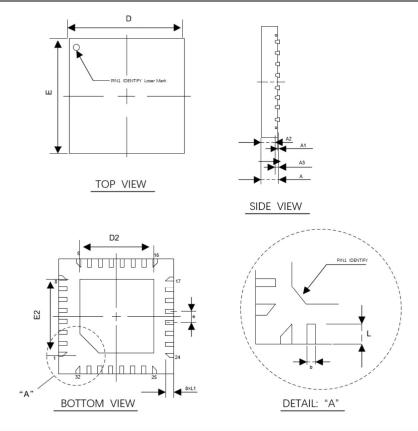
功耗				
模式	状态	电流	単位	
正常模式	未连接	5	MA	
	已连接	5	MA	
睡眠模式1电流	有广播	<100 之间跳动	UA	
睡眠模式2电流	无广播	3.3	UA	

3·4·射频特性

功能	取值
BLE发射功率	5dBm(默认)
BLE 灵敏度	-94dBm@0.1%BER

3.5 静电防护

在芯片应用中,由于人体静电、微电子间带电摩擦等产生的静电,通过各种途径放电给芯片,可能会对芯片造成一定的损坏,因此 ESD 防护应该受到重视。在研发、生产组装和测试等过程中,尤其在产品设计中,均应采取 ESD 防护措施。例如,在电路设计的接口处以及易受静电放电损伤或影响的点,应增加防静电保护,生产中应佩戴防静电手套等。

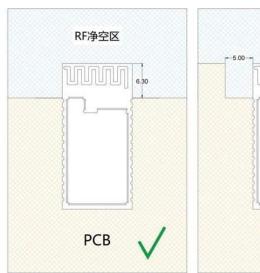

芯片引脚的 ESD 耐受电压情况表

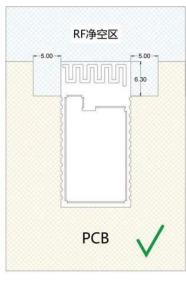
测试接口	接触放电	空气放电	单位
VBAT \GND	+4	+8	KV
存储温度	+2.5	+4	KV

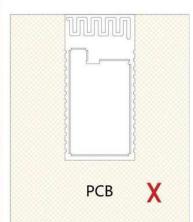
四. 机械尺寸及布局建议

4.1、产品尺寸

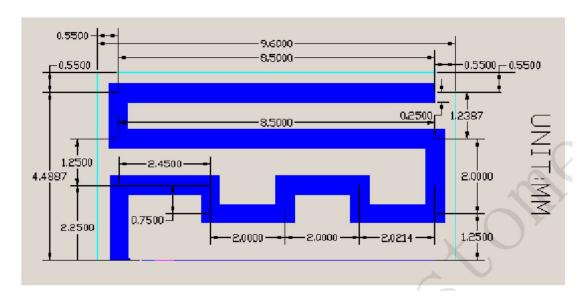
Causeh ol	Dimension in mm			Dimension in inch		
Symbol	Min	Nom	Max	Min	Nom	Max
Α	0.80	0.85	0.90	0.031	0.033	0.035
A1	0.00	0.02	0.05	0.000	0.001	0.002
A2	-	0.65	0.70	-	0.026	0.028
A3		0.2REF			0.008REF	
b	0.15	0.20	0.25	0.006	0.008	0.010
D/E		4.00BSC			0.157BSC	
D2/E2	2.55	2.70	2.85	0.100	0.106	0.112
е		0.40BSC			0.016BSC	
L	0.30	0.40	0.50	0.012	0.016	0.020
L1	0.282	0.382	0.482	0.011	0.015	0.019

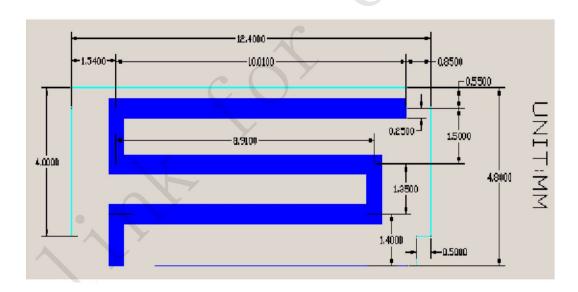

4.2 硬件设计布局建议


蓝牙芯片工作在 2.4G 无线频段,天线的驻波比(VSWR)和效率取决于贴片位置,应尽量避免各种因素对无线收发信号的影响,注意以下几点:

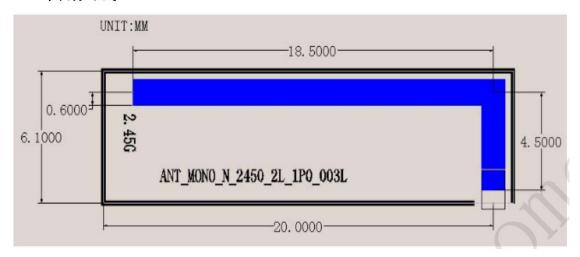

1、包围蓝牙的产品外壳避免使用金属,当使用部分金属夕卜壳时,应尽量让芯片天线部分远离金属部分。产品内部金属连接线或者金属螺钉,应尽量远离芯片天线部分。

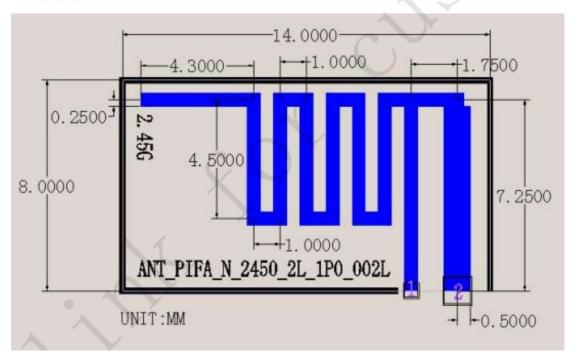
- 2、天线部分应靠载板 PCB 边缘放置或直接露出载板,不允许放置于板中间,天线方向至少有 5mm 的自由空间,且天线下方载板铣空,与天线平行的方向不允许铺铜和走线。
- 3、建议在基板上的芯片贴装位置使用绝缘材料进行隔离,例如在该位置放一个整块的丝印 (TopOverLay)

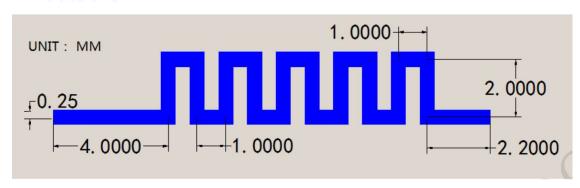




4.3 几种常用天线设计


1 常用天线1


2 常用天线 2


3 常用天线3

4 常用天线 4

5 常用天线 5

五. 储存 生产和包装

5·1·存储条件

芯片以真空密封袋的形式出货。芯片的湿度敏感等级为3(MSL3),其存储需遵循如下条件·

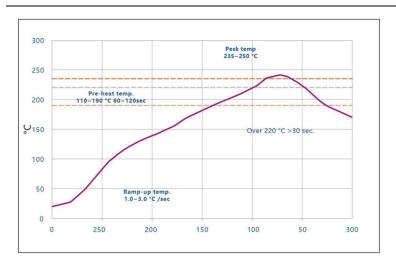
- 1. 推荐存储条件: 温度 23 ± 5℃, 且相对湿度为 35⁶⁰%。
- 2. 在推荐存储条件下,芯片可在真空密封袋中存放12个月。

- 3 ·在温度为 23 ± 5℃、相对湿度低于 60%的车间条 4 牛下,芯片拆封后的车间寿命为 1 68 小时。在此条件下,可直接对芯片进行回流生产或其他高温操作。否则,需要将芯片存储于相对湿度小于 1 0%的环境中(例如,防潮柜)以保持芯片的干燥。
- 4·若芯片处于如下条件,需要对芯片进行预烘烤处理以防止芯片吸湿受潮再高温悍接后 出现的 PCB 起泡、裂痕和分层.
- 存储温湿度不符合推荐存储条件;
- 芯片拆封后未能根据以上第3条完成生产或存放;
- 真空包装氵届气、物料散装;

5.2. 烘烤处理

- 需要在 120 ± 5℃条件下高温烘烤 8 小时;
- 次烘烤的须在烘烤后 24 小时内完成焊接,否则仍需在干燥箱内保存;

备注


- 2 为预防和减少芯片因受潮导致的起泡、分层等焊接不良的发生,应严格进行管控,不建 议拆开真空包装后长时间暴露在空气中。
- 3 烘烤前,需将芯片从包装取出,将裸芯片放置在耐高温器具上,以免高温损伤塑料托盘 或卷盘;二次烘烤的芯片须在烘烤后 24 小时内完成悍接,否则需在干燥箱内保存。拆包、 放置芯片时请注意 ESD 防护,例如,佩戴防静电手套。

5·3·回流焊

用印刷刮板在网板上印刷锡膏,使锡膏通过网板开口漏印到PCB上,印刷刮板力度需调整合适。为保证芯片印膏质量,芯片焊盘部分对应的钢网厚度推荐为0.1~0.15mm.

推荐的回流焊温度为 235~250 ℃,最高不能超过 250 ℃为避免芯片因反复受热而损坏,强烈推荐客户在完成 PCB 板第一面的回流悍之后再贴芯片。推荐的炉温曲线图(无铅 SMT 回流焊)和相关参数如下图表所示:

六、串口 AT 指令集

6.1 串口 **AT** 指令集

芯片串口发送 AT 指令务必加上\r\n

序列	指令	作用	主/从	默认
1	AT+VER	版本号	S	WJ62-V1.0
2	AT+RST	软复位	S	OK
3	AT+DISC	AT 指令断开连接	S	_
4	AT+STAT			00
5	AT+MAC	MAC 地址	S	-
6	AT+BAUD	波特率	S	38400
7	AT+SLEEP1	浅睡眠	S	OK
8	AT+SLEEP1	深睡眠	S	OK
8	AT+NAME	广播名	S	
10	AT+ADVIN	广播间隔	S	1 (200mS)
16	AT+ALED	广播 LED 灯指示开关		1

6.1、**AT** 指令说明

特别说明: 芯片串口 AT 指令需要加结束符\r\n

查询一版本号

指令	响应	参数
AT+VER	+VER:WJ62-V1.0	无

设置--软复位

指令	响应	参数
AT+RST	+OK	无

设置--断开连接

指令	响应	参数
AT+DISC	+OK	无

注意: 在连接状态下, PWRC 引脚拉低发 AT 指令

查询--连接状态

指令	响应	参数
AT+STAT	+STAT: <param/>	00: 表示未连接 01: 表示已连接

设置/查询--MAC 地址 (最多可设置 3 次,超出为最后一次值)

支持 AT 指令修改 MAC 地址, 例子: AT+MAC112233445566\r\n

指令	响应	参数
AT+MAC <param/>	+OK	Param:(MAC 地址字符串)
AT+MAC	+MAC: <param/>	

设置/查询一波特率 (最多可设置3次,超出为最后一次值)

指令	响应	参数
AT+BAUD <param/>	+OK	Param: (1-9)
		0115200
		157600
		238400

AT+BAUD	+BAUD: <param/>	319200
		49600
		54800
		6——2400 默认值: 3

设置/查询一睡眠指令 (掉电不保存)

指令	响应	参数
AT+SLEEP <param/>		Param: (1-2)
AT+SLEEP	+OK	1: 浅睡(有广播) 2: 深度睡眠(无广播)

PWRC 引脚高电平唤醒。

设置/查询一广播名 (最多可设置3次,超出为最后一次值)

指令	响应	参数
AT+NAME <param/>	+OK	Param: 芯片蓝牙名称
AT+NAME	+NAME: <param/>	最长: 24 字节 默认名称:

设置/查询--广播间隔 (断电不保存)

指令	响应	参数
AT+ADVIN <param/>	+OK	Param: (0-9)
		0: 100ms
		1: 200ms
		2: 300ms
AT+ADVIN	+ADVIN: <param/>	3: 400ms
		4: 500ms
		5: 600ms
		6: 700ms
		7: 800ms
		8: 900ms
		9: 1000ms
		默认: 1

七、联系我们

客户若有其它功能需求,我司可根据客户需求提供定制化服务,联系方式如下:

电话: 17875398039 邮箱: <u>yzy@yatelian.com</u>