

Modify Record:

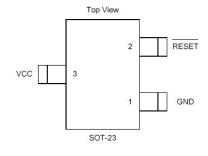
版次	新版本	旧版本	修改单位	修改内容	
2005-08-10	1.0	NA	研发部	新文件制成	
2008-10-26	1.1	1.0	市场部	增加 T092 封装,去掉 order 中代 表封装的 S	
2015-10-26	1.2	1.1	市场部	去掉 TO92 封装,增加 HF 无卤素, Order 标签 Part NO 变更命名方式	
2016-10-26	1.3	1.2	市场部	去掉 T092 封装脚位图	
2021-11-08	1.4	1.3	研发部	增加 Vcc 和 Icc 的条件	

Description

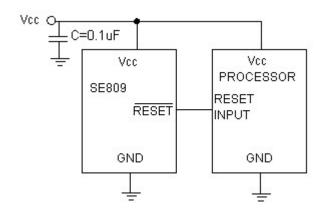
The SE809 is a cost-effective system supervisor Integrated Circuit (IC) designed to monitor V_{CC} in digital and mixed signal systems and provide a warning signal when the system power supply is out of working range, and a reset signal to the host processor when necessary. No external components are required.

The reset output is driven active within 20µsec of V_{CC} falling through the reset voltage threshold. Reset is maintained active for a minimum of 150msec after V_{CC} rises above the reset threshold. The SE809 has an active-low RESET output. The output of the SE809 is guaranteed valid down to V_{CC} =1V.

The SE809 is optimized to reject fast transient glitches on the V_{CC} line. Low supply current of $18\mu A$ (V_{CC} =3.3V) makes these devices suitable for battery powered applications. The output voltages range from 1.7V to 4.5V in 100mV increments. Standard voltage versions are 2.63, 2.93, 3.08, 4.0, 4.38, and 4.63V.


Features

- Precision V_{CC} Monitor for 2.8V, 3.0V, 3.3V, and 5.0V Supplies
- 150msec Guaranteed Minimum RESET Output Duration
- RESET Output Guaranteed to V_{CC}=1.0V
- ➤ Low7µA Supply Current
- V_{CC} Transient Immunity
- No External Components
- Small SOT-23 Package
- Wide Operating Temperature: 0°C to 85°C


Application

- Computers
- Embedded systems
- Battery powered equipment
- Critical μP power supply monitoring

Pin Configuration

Application Diagram

Ordering/Marking Information

Ordering Information	Marking Information	
SE809-LF-XXV	S809xa*	Starting with 8, a bar on top of 8 is for production year 2003, and underlined 8 is for year 2004. The
SE809-HF-XXV	S809xa	next character is marked on top for 2005, and
Suffix	Reset V _{cc} threshold(V)	underlined for 2006. The naming pattern continues
L	4.63	with consecutive characters for later years. The "x" denotes a suffix for V _{CC} threshold.
M	4.38	The last character is the week code. (A-Z: 1-26,
J	4.00	a-z: 27-52)
Т	3.08	A dot on top right corner is for lead-free process.
S	2.93	No dot on top right corner is for Halogen Free process
R	2.63	
Z	2.30	

Absolute Maximum Ratings⁽¹⁾

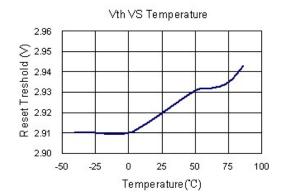
Parameter	Symbol	Value	Units
Input Voltage	V _{CC}	5.5	٧
Output Voltage	RESET	-0.3 to (V _{CC} + 0.3)	V
Input Current		20	mA
Output Current	I _{OUT}	20	mA
Power Dissipation	P_D	Internally Limited ⁽³⁾	
Output Short Circuit Duration		Infinite	
Thermal Resistance, Junction-to-Ambient	ΘЈΑ	230	°C/W
Operating Temperature Range	T _A	0 ~ 85	°C
Lead Temperature (Soldering, 10 sec.)		260	ů
Junction Temperature	TJ	0 to +125	°C
Storage Temperature	Ts	-60 to +150	°C

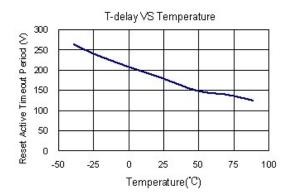
Operating Rating⁽²⁾

Parameter	Symbol	Value	Units
Supply Input Voltage	V _{CC}	+2.0V to +5.5	V
Junction Temperature	TJ	0 to +125	°C

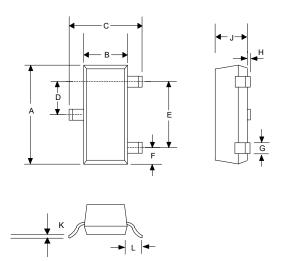
Electrical Characteristics

Vcc=5V for L/M/J ;3.3V for T/S ;3.0V for R , T_A = 25°C, unless otherwise specified.


Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{CC}	Input Voltage	Ta=25°C	2.0		5.5	V
I _{cc}	Supply Current	VDD <5V, ISINK = 0		7	-	μА
		SE809L-4.63V	4.514	4.63	4.746	
		SE809M-4.38V	4.271	4.38	4.49	
		SE809J-4.00V	3.90	4.00	4.1	
V_{TH}	Reset Threshold	SE809T-3.08V	3.003	3.08	3.157	V
		SE809S-2.93V	2.857	2.93	3.003	
		SE809R-2.63V	2.564	2.63	2.696	
		SE809Z-2.30V	2.194	2.25	2.306	
	Reset Threshold Temperature			30		nnm/°C
	Coefficient ⁽⁴⁾			30		ppm/°C
	V_{CC} to Reset Delay V_{CC} = V_{TH}			20		
	to (V _{TH} – 100mV)			20		µsec
	Reset Active Timeout Period			150		msec
V _{OL}	RESET Output Voltage Low	I _{SINK} = 3.2mA			0.4	V
V _{OH}	RESET Output Voltage High	I _{SOURCE} = 800μA	0.8V _{CC}			V


PIN DESCRIPTION:

Pin No.	Symbol	Description	
1	GND	Ground	
2	RESET	RESET output remains low while Vcc is below the reset voltage	
		threshold and for 150msec(typ) after Vcc rises above reset threshold	
3	Vcc	Supply Voltage (typ.)	


- Note 1: Exceeding the absolute maximum rating may damage the device.
- Note 2: The device is not guaranteed to function outside its operating rating.
- Note 3: The maximum allowable power dissipation at any T_A (ambient temperature) is calculated using: $P_{D(MAX)} = (T_{J(MAX)} T_A)/\Theta_{JA}$. Exceeding the maximum allowable power dissipation will result in excessive die temperature, and the regulator will go into thermal shutdown. See "Thermal Consideration" section for details
- **Note 4:** RESET threshold temperature coefficient is the worst case voltage change divided by the total temperature range.

Typical Performance Characteristics

OUTLINE DRAWING SOT-23

DIMENSIONS					
DIM ^N	INCHES		MM		
	MIN	MAX	MIN	MAX	
Α	0.110	0.120	2.80	3.04	
В	0.047	0.055	1.20	1.40	
С	0.083	0.104	2.10	2.64	
D	0.035	0.040	0.89	1.03	
E	0.070	0.080	1.78	2.05	
F	0.018	0.024	0.45	0.60	
G	0.015	0.020	0.37	0.51	
Н	0.0005	0.004	0.013	0.10	
J	0.034	0.040	0.887	1.02	
K	0.003	0.007	0.085	0.18	
L	-	0.027	-	0.69	

Customer Support

Seaward Electronics Incorporated – China

Section B, 2nd Floor, ShangDi Scientific Office Complex, #22 XinXi Road

Haidian District, Beijing 100085, China

Tel: 86-10-8289-5700/01/05

Fax: 86-10-8289-5706

Email: sales@seawardinc.com.cn

<u>Seaward Electronics Incorporated – North America</u>

1512 Centre Pointe Dr.

Milpitas, CA95035, USA

Tel: 1-650-444-0713