

1117A

Features

Maximum output current is 1.4A

Range of operation input voltage: Max 15V

• Line regulation: 0.03%/V (typ.)

Applications

 Power Management for Computer Mother Board, Graphic Card

LCD Monitor and LCD TV

1.4A Bipolar Linear Regulator

• Standby current: 2mA (typ.)

• Load regulation: 0.2%/A (typ.)

■ Environment Temperature: -40°C~125°C

DVD Decode Board

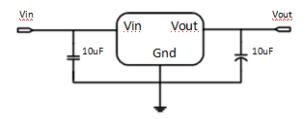
ADSL Modem

Post Regulators for Switching Supplies

General Description

1117A is a series of low dropout three-terminal regulators with a dropout of 1.3V at 1.4A load current.

1117A features a very low standby current 2mA compared to 5mA of competitor.


Other than a fixed version, Vout = 1.2V, 1.8V, 2.5V, 2.85V, 3.3V, and 5V, 1117A has an adjustable version, which can provide an output voltage from 1.25 to 12V with only

two external resistors.

1117A offers thermal shut down function, to assure the stability of chip and power system. And it uses trimming technique to guarantee output voltage accuracy within 2%. Other output voltage accuracy can be customized on demand, such as 1%.

1117A is available in SOT -223, TO-252 packages.

Typical Application

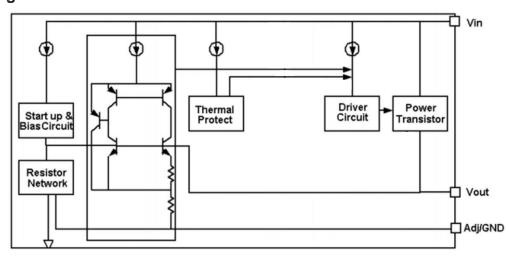
Application circuit of 1117A fixed version

Selection Table

Part No.	Symbol.	Output Voltage	Package	Marking
	XX=12	1.2V		
	XX=18	1.8V		
1117 A	XX=25	2.5V	SOT-223	1117 A
	XX=33	3.3V	TO-252	XX SSWW
	XX=50	5.0V		
	XX=ADJ	Adj		

Note: 1. "XX" stands for output voltage,

2. "SSWW" stands for order number and Data Code.



Ordering Information

Part No.		Package Type	Packing type
	1117A -XXV	SOT223	2500 Tape&Reel
	1117A -XXTR	TO252	2500 Tape&Reel

Note:"XX" stands for output voltages.

Block Diagram

Pin Configuration

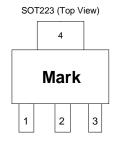


Table1: 1117A series (SOT223 PKG)

PIN NO.	PIN NAME	FUNCTION		
1	VSS/ADJ	VSS/ADJ pin		
2	VOUT	Output voltage pin		
3	VIN	Input voltage pin		
4 VOUT		Output voltage pin		

TO252 (Top View)

Table2: 1117A-XXTR series (TO252 PKG)

()					
PIN NO. PIN NAME		FUNCTION			
1	VSS/ADJ	VSS/ADJ pin			
2 VOUT		Output voltage pin			
3 VIN		Input voltage pin			

Min

avT

Max

Unit

Absolute Maximum Ratings

Max Input Voltage ·····	·· ·· 18V
Max Operating Junction Temperature(Tj)	150°C
Storage Temperature(Ts)	55℃~150℃
Lead Temperature & Time	260°C 10S
Caution: Exceed these limits to damage to the device. Exposure to absolute maximum rating con	ditions may affect
device reliability.	

Conditions

Electrical Characteristics

 $T_A=25^{\circ}C$, unless otherwise noted.

Symbol Parameter

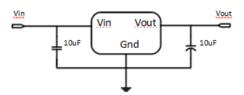
Syllibol	i arameter	Conditions	IVIIII	ıyρ	IVIAA	Offic
Vref	Reference	1117A -Adj	1.225	1.25	1.275	V
	voltage	10mA≲lout≲ 1.4A , Vin=3.25V				
		1117A -1.2V	1.176	1.2	1.224	V
		0≤lout≤ 1.4A , Vin=3.2V				
		1117A -1.8V	1.764	1.8	1.836	V
		0≤lout≤ 1.4A , Vin=3.8V				
		1117A -2.5V	2.45	2.5	2.55	V
Vout	Output voltage	0≲lout≤1.4A , Vin=4.5V				
		1117A -3.3V	3.234	3.3	3.366	V
		0≤lout≤1.4A , Vin=5.3V				
		1117A -5.0V	4.9	5.0	5.1	V
		0≤lout≤1.4A, Vin=7.0V				
					•	•
		1117A -1.2V		4	20	mV
		lout=10mA, 2.7V≲Vin≤10V				
		1117A -ADJ		5	30	mV
		lout=10mA, 2.75V≲Vin≤12V				
		1117A -1.8V		5	40	mV
		lout=10mA, 3.3V≲Vin≤12V				
△Vout	Line	1117A -2.5V		8	50	mV
	regulation	lout=10mA, 4.0V≲Vin≤12V				
		1117A -3.3V		9	60	mV
		lout=10mA, 4.8V≲Vin≤12V				
		1117A -5.0V		10	70	mV
		lout=10mA, 6.5V≲Vin≤12V				
		•				,
		1117A -1.2V		2	24	mV

		Vin =2.7V, 10mA≤lout≤ 1.4A			
		1117A -ADJ	2	25	mV
		Vin =2.75V, 10mA≤lout≤1.4A			
		1117A -1.8V	3	36	mV
		Vin =3.3V, 10mA≤lout≤1.4A			
$\triangle Vout$	Load	1117A -2.5V	4	50	mV
	regulation	Vin =4.0V, 10mA≤lout≤1.4A			
		1117A -3.3	6	66	mV
		Vin =4.8V, 10mA≤lout≤1.4A			
		1117A -5.0	9	100	mV
		Vin =6.5V, 10mA≤lout≤1.4A			
Vdrop	Dropout voltage	lout =100mA	1.2	1.3	V
		lout=1.4A	1.3	1.5	V
Imin	Minimum load	1117A -ADJ	2	10	mA
	current				
		1117A -1.2V, Vin=10V	2	5	mA
		1117A -1.8V, Vin=12V	2	5	mA
lq	Quiescent	1117A -2.5V, Vin=12V	2	5	mA
	Current	1117A -3.3V, Vin=12V	2	5	mA
		1117A -5.0V, Vin=12V	2	5	mA
lAdj	Adjust pin	1117A -ADJ	55	120	uA
	current	Vin=5V,10mA≤lout≤1.4A			
Ichange	ladj change	1117A -ADJ	0.2	10	uA
		Vin=5V,10mA≤lout≤1.4A			
∆ V / ∆ T	Temperature		±100		ppm
	coefficien				
θJC	Thermal	SOT-223	20		
₀ JC	resistance	TO-252	10		°C/W

Note1: All test are conducted under ambient temperature 25° C and within a short period of time 20ms

Note2: Load current smaller than minimum load current of 1117A -ADJ will lead to unstable or oscillation output.

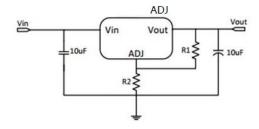
Detailed Description


1117A is a series of low dropout voltage, three terminal regulators. Its application circuit is very simple: the fixed version only needs two capacitors and the adjustable version only needs two resistors and two capacitors to work. It is composed of some modules including start-up circuit, bias circuit, bandgap, thermal shutdown, power transistors and its driver circuit and so on.

The bandgap module provides stable reference voltage, whose temperature coefficient is compensated by careful design considerations. The temperature coefficient is under 100 ppm/°C. And the accuracy of output voltage is guaranteed by trimming technique.

Typical Application

1117A has an adjustable version and six fixed versions (1.2V, 1.8V, 2.5V, 3.3V and 5V)


Fixed Output Voltage Version

Application circuit of 1117A fixed version

- 1) Recommend using 10uF tan capacitor as bypass capacitor (C1) for all application circuit.
- 2) Recommend using 10uF tan capacitor to assure circuit stability.

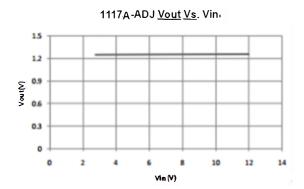
Adjustable Output Voltage Version

Application Circuit of 1117A -ADJ

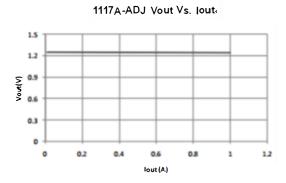
The output voltage of adjustable version follows the equation: Vout= $1.25 \times (1+R2/R1)+IAdj \times R2$. We can ignore IAdj because IAdj (about 50uA) is much less than the current of R1 (about 2~10mA).

- 1) To meet the minimum load current (>10mA) requirement, R1 is recommended to be 125ohm or lower. As 1117A ADJ can keep itself stable at load current about 2mA, R1 is not allowed to be higher than 625ohm.
- 2) Using a bypass capacitor (C_{ADJ}) between the ADJ pin and ground can improve ripple rejection. This bypass capacitor prevents ripple from being amplified as the output voltage is increased. The impedance of C_{ADJ} should be less than R1 to prevent ripple from being amplified. As R1 is normally in the range of $100\Omega\sim500\Omega$, the value of C_{ADJ} should satisfy this equation: $1/(2 \pi \times f_{fipple} \times C_{ADJ}) < R1$.

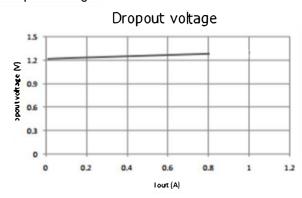
www.szjtdsemi.com 5 Rev-1.0

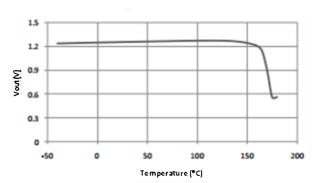

Thermal Considerations

We have to take heat dissipation into great consideration when output current or differential voltage of input and output voltage is large. Because in such cases, the power dissipation consumed by 1117A is very large. 1117A series uses SOT-223 package type and its thermal resistance is about 20°C/VV. And the copper area of application board can affect the total thermal resistance. If copper area is 5cm*5cm (two sides), the resistance is about 30°C/W. So the total thermal resistance is about 20°C/W + 30°C/W. We can decrease total thermal resistance by increasing copper area in application board. When there is no good heat dissipation copper are in PCB, the total thermal resistance will be as high as 120°C/W, then the power dissipation of 1117A could allow on itself is less than 1W. And furthermore, 1117A will work at junction temperature higher than 125°C under such condition and no life time is guaranteed.

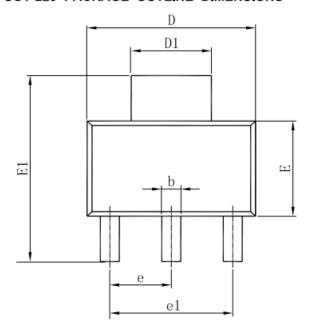

Typical Performance Charcteristics

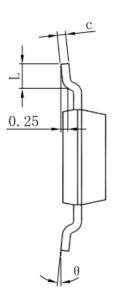
T_A=25℃, unless otherwise noted

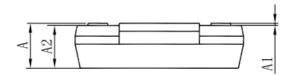

Line regulation


Load regulation

Dropout voltage

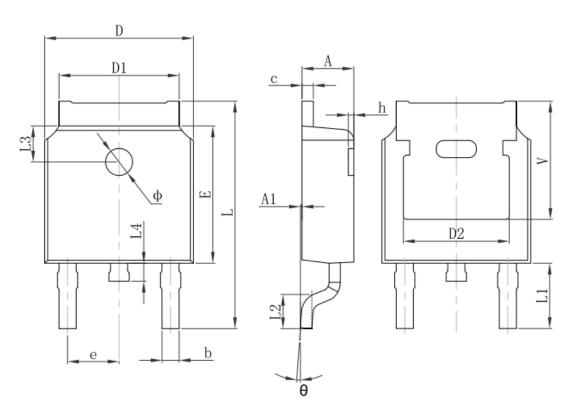

Thermal performance with OTP





Package Information

SOT-223 PACKAGE OUTLINE DIMENSIONS



Cumb a l	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min	Max	Min	Max	
Α	1.520	1.800	0.060	0.071	
A1	0.000	0.100	0.000	0.004	
A2	1.500	1.700	0.059	0.067	
b	0.660	0.820	0.026	0.032	
С	0.250	0.350	0.010	0.014	
D	6.200	6.400	0.244	0.252	
D1	2.900	3.100	0.114	0.122	
E	3.300	3.700	0.130	0.146	
E1	6.830	7.070	0.269	0.278	
е	2.300(BSC)	0.091(BSC)		
e1	4.500	4.700	0.177	0.185	
L	0.900	1.150	0.035	0.045	
θ	0°	10°	0°	10°	

TO-252-2L PACKAGE OUTLINE DIMENSIONS

Cumbal	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
Α	2.200	2.400	0.087	0.094	
A1	0.000	0.127	0.000	0.005	
b	0.660	0.860	0.026	0.034	
С	0.460	0.580	0.018	0.023	
D	6.500	6.700	0.256	0.264	
D1	5.100	5.460	0.201	0.215	
D2	4.830	REF.	0.190	REF.	
E	6.000	6.200	0.236	0.244	
е	2.186	2.386	0.086	0.094	
L	9.800	10.400	0.386	0.409	
L1	2.900 REF.		0.114	REF.	
L2	1.400	1.700	0.055	0.067	
L3	1.600 REF.		0.063	REF.	
L4	0.600	1.000	0.024	0.039	
Ф	1.100	1.300	0.043	0.051	
θ	0°	8°	0°	8°	
h	0.000	0.300	0.000	0.012	
V	5.350	REF.	0.211 REF.		

www.szjtdsemi.com 8 Rev-1.0