

零温漂、单电源、轨到轨 单通道斩波运算放大器

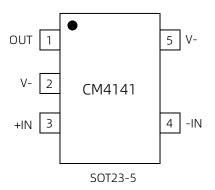
CM4141 数据手册

特征

- 5V 单电源供电
- 低噪声自稳零放大器
- 低失调电压: 典型值为 0.5µV (5V)
- 失调电压温漂: < 0.03µV/℃
- 轨到轨输入和输出摆幅
- 高增益、高 CMRR 和高 PSRR: > 130dB
- 极低输入偏置电流:最大值为 100pA
- 低功耗: 典型值为 900µA
- 过载恢复时间:典型值为 130µs (5V)
- SOT23-5 2.9mm×1.6mm 封装

应用

- 汽车传感器
- 压力和位置传感器
- 应变计放大器
- 医疗仪器
- 热电偶放大器
- 精密电流检测
- 光电二极管放大器


概述

CM4141 是一款高精度、宽带宽、零温漂、单通道斩波放大器, 采用 2.7V 至 5V 单电源供电。CM4141 采用自研的拓扑电路结构, 不仅能够简化外围电路设计, 降低了成本, 还降低了传统斩波放大器所具有的高开关噪声。

CM4141 的失调电压典型值仅为 0.5μV,失调电压温漂小于 0.03μV/℃,噪声仅为 0.15μVpp(0.1Hz 至 10Hz),因而对系统引入的误差非常小,适用于各种高精度应用。该款放大器在工作温度范围内的温漂接近零,对压力和位置传感器、医疗仪器以及应变计放大器等应用极为有利。轨到轨的输入和输出摆幅特性,可以降低输入偏置复杂度,同时使系统的 SNR 性能达到最优。

CM4141 采用 SOT23-5 型封装,其最佳工作温度范围为-40°C~125°C。

管脚配置

目录

封页1	1/f 噪声	13
特征	输出反相	13
应用1	过载恢复时间	13
概述1	应用	15
管脚配置1	电流检测放大器	15
文档历史3	DAC 的输出放大器	15
绝对最大额定值4	封装及订购信息	16
电气规格5	封装形式	16
典型特征9	产品外形图	16
工作原理13	订购信息	17

文档历史

下表列举了本文档自产品发布后的所有更新。

文档版本	修订日期	内容描述
V1.0	2024-10-15	初版发布。

绝对最大额定值

	参数	最小值	最大值	单位		
温度						
工作温度		-40	125	°C		
存储温度		-65	150	°C		
结温			150	°C		
回流焊	铅锡焊接温度(10 秒到 30 秒)		240	°C		
四加件	无铅焊接温度		260	°C		
耐压	•					
电源电压			6	V		
模拟输入电	<u> </u>	(V-) - 0.3	(V+) + 0.3	V		
模拟输出电	<u> </u>	(V-) - 0.3	(V+) + 0.3	V		
ESD	ESD					
НВМ		5000		V		
CDM		1000		V		

电气规格

默认测试条件: VS = 5V、VCM = 2.5V、TA = 25℃。

参数	测试条件	最小值	典型值	最大值	单位
输入特征					
失调电压			0.5	3	μV
大响电压	TA = -40°C~125°C			5	μV
於 》/户罢中达			65	100	рА
输入偏置电流	TA = -40°C~125°C		300		рА
输入失调电流			200	400	рА
那八大响 电加	TA = -40°C~125°C			550	рА
输入电压范围		0		5	V
CMDD	VCM = 0V~5V	120	140		dB
CMRR	TA = -40°C~125°C	115	130		dB
	$R_L = 10k\Omega$, $V_0 = 0.3V \sim 4.7V$	130	145		dB
大信号电压增益	$R_L = 10k\Omega$, $V_O = 0.3V\sim4.7V$, $TA = -40^{\circ}C\sim125^{\circ}C$	125	140		dB
失调电压温漂	TA = -40°C~125°C			0.03	μV/°C
☆ \ d ⇔	差模		4.5		pF
输入电容	共模		12.6		pF
输出特征		•			
	OUT 到 V- 的负载电阻 R _L = 100kΩ		4.993		V
京中亚松山中区	OUT 到 V- 的负载电阻 R _L = 100kΩ, TA = -40°C~125°C		4.993		V
高电平输出电压	OUT 到 V- 的负载电阻 R_L = $10k\Omega$		4.98		V
	OUT 到 V- 的负载电阻 R _L = 10kΩ, TA = -40°C~125°C		4.97		V
	OUT 到 V+的负载电阻 R_L = $100k\Omega$		2		mV
/r do Tribally do Fr	OUT 到 V+ 的负载电阻 R _L = 100kΩ, TA = -40°C~125°C		3		mV
低电平输出电压	OUT 到 V+ 的负载电阻 R_L = $10kΩ$		10		mV
	OUT 到 V+ 的负载电阻 R _L = 10kΩ, TA = -40°C~125°C		15		mV
后吸点许见法	对 V- 短路	21			mA
短路电流限值	对 V+ 短路	-35		mA	
电源					
PSRR	VS = 2.7V~5.5V, TA = -40°C~125°C	120	133		dB
			0.9		mA
电源电流 (每放大器)	TA = -40°C~125°C		1.1		mA

参数	测试条件	最小值	典型值	最大值	单位	
动态性能						
压摆率	$V_{IN} = 0.5V \sim 4.5V, R_L = 10k\Omega$		1.2		V/µs	
压法 华	$V_{IN} = 4.5V \sim 0.5V, R_L = 10k\Omega$		2.3		V/µs	
过载恢复时间	$V_{IN} = 100 \text{mVpp}, R_L = 10 \text{k}\Omega$		0.13		ms	
增益带宽积	$R_L = 10k\Omega$	2.8		MHz		
噪声性能						
中工品主	0.1Hz~10Hz		0.15		μVpp	
电压噪声 0.1Hz~1Hz			0.05		μVpp	
电压噪声密度	1kHz	9			nV/√Hz	
电流噪声密度	10Hz	-	0.35		pA/√Hz	

默认测试条件: VS = 2.7V、VCM = 1.35V、TA = 25℃。

参数	测试条件	最小值	典型值	最大值	单位
		•			
生油中 [0.9	3.5	μV
失调电压	TA = -40°C~125°C			5	μV
松) 原黑电流			68	100	рА
输入偏置电流	TA = -40°C~125°C			300	рА
松)			200	400	рА
输入失调电流	TA = -40°C~125°C			550	рА
輸入电压范围		0		2.7	V
CMADD		115	130		dB
CMRR	VCM = 0V~2.7V, TA = -40°C~125°C	110	120		dB
	$R_L = 10k\Omega$, $V_O = 0.3V \sim 2.4V$	125	140		dB
大信号电压增益	$R_L = 10k\Omega$, $V_O = 0.3V\sim2.4V$, $TA = -40^{\circ}C\sim125^{\circ}C$	120	135		dB
失调电压温漂	TA = -40°C~125°C	0.01		0.03	μV/°C
40.5.4.4	差模		4.5		pF
输入电容	共模		12.6		pF
输出特征	•	•			
	OUT 到 V- 的负载电阻 R_L = $100k\Omega$		2.698		V
효ᇎᄿᄱᅭᄄ	OUT 到 V- 的负载电阻 R _L = 100kΩ, TA = -40°C~125°C		2.698		V
高电平输出电压	OUT 到 V- 的负载电阻 R_L = $10k\Omega$		2.692		V
	OUT 到 V- 的负载电阻 R _L = 10kΩ, TA = -40°C~125°C		2.69		V
	OUT 到 V+ 的负载电阻 R _L = 100kΩ		2		mV
/r. do ze to lili do re	OUT 到 V+ 的负载电阻 R _L = 100kΩ, TA = -40°C~125°C		2		mV
低电平输出电压	OUT 到 V+ 的负载电阻 R _L = 10kΩ		8		mV
	OUT 到 V+ 的负载电阻 R _L = 10kΩ, TA = -40°C~125°C		10		mV
	对 V- 短路	20		mA	
短路电流限值	对 V+ 短路	-38		mA	
电源	•	•			
PSRR	VS = 2.7V~5.5V, TA = -40°C~125°C	120	133		dB
			0.9		mA
电源电流(每放大器)			0.9		ША

参数	测试条件	最小值	典型值	最大值	单位
压摆率	$V_{IN} = 0.35V \sim 2.35V, R_L = 10k\Omega$		1.1		V/µs
压法学	$V_{IN} = 2.35V \sim 0.35V, R_L = 10k\Omega$		2.3		V/µs
过载恢复时间	$V_{IN} = 100 \text{mVpp}, R_L = 10 \text{k}\Omega$		0.14		ms
增益带宽积		2.7		MHz	
噪声性能					
电压噪声	0.1Hz~10Hz		0.15		μVpp
电压噪声密度	1kHz		8.5		nV/√Hz
电流噪声密度	1kHz	0.44		pA/√Hz	

典型特征

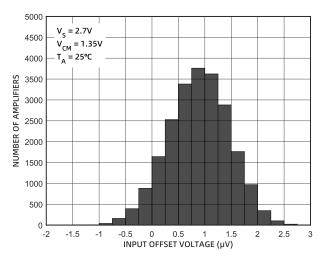


图 1 输入失调电压分布图 (2.7V)

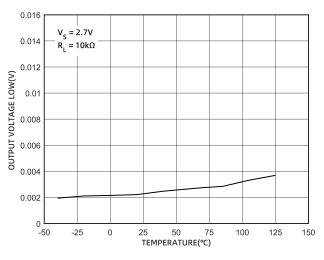


图 3 输出低电平的温度特性 (2.7V)

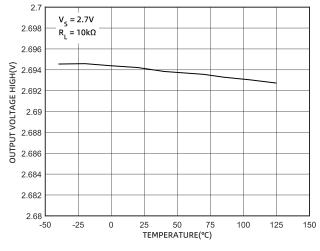


图 5 输出高电平的温度特性 (2.7V)

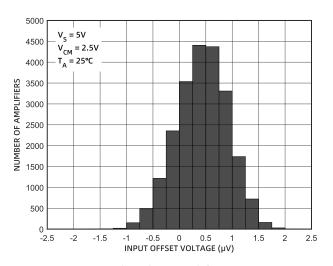


图 2 输入失调电压分布图 (5V)

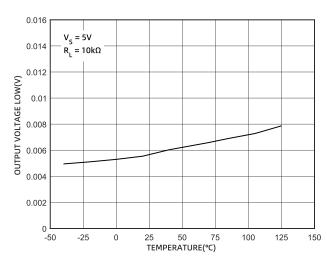


图 4 输出低电平的温度特性 (5V)

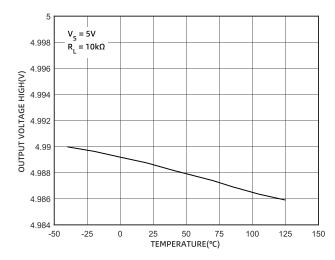


图 6 输出高电平的温度特性 (5V)

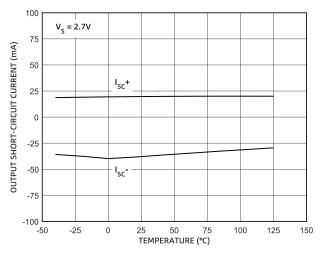


图 7 短路电流的温度特性 (2.7V)

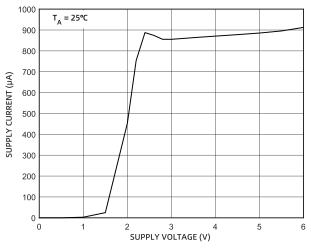


图 9 电源电流与电源电压的关系

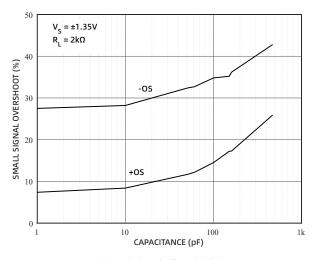


图 11 小信号过冲与负载电容的关系 (2.7V)

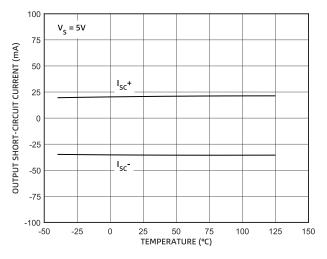


图 8 短路电流的温度特性 (5V)

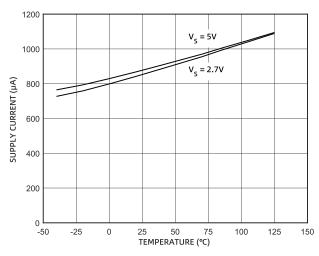


图 10 电源电流的温度特性

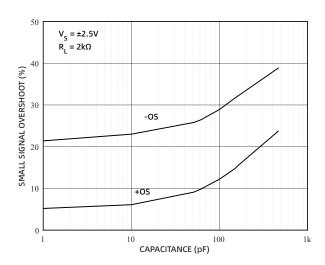


图 12 小信号过冲与负载电容的关系 (5V)

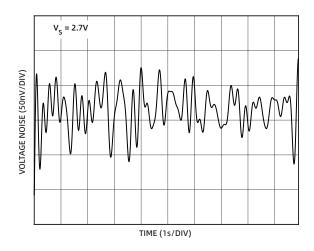


图 13 输入电压噪声 (2.7V, 0.1Hz~10Hz)

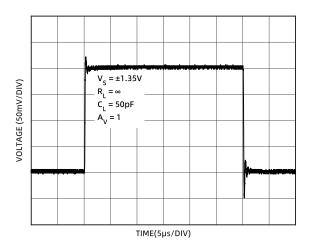


图 15 小信号瞬态响应 (2.7V)

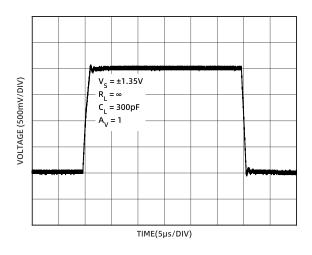


图 17 大信号瞬态响应 (2.7V)

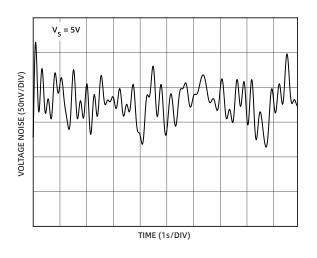


图 14 输入电压噪声 (5V, 0.1Hz~10Hz)

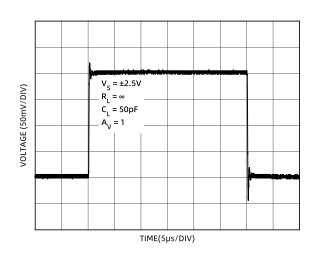


图 16 小信号瞬态响应 (5V)

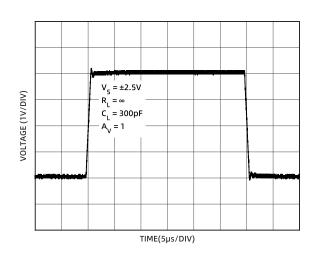


图 18 大信号瞬态响应 (5V)

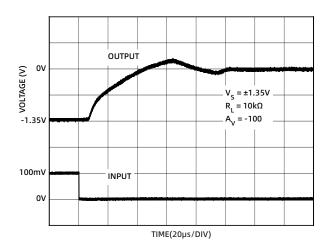


图 19 正过载恢复时间 (2.7V)

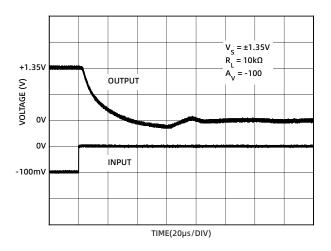


图 21 负过载恢复时间 (2.7V)

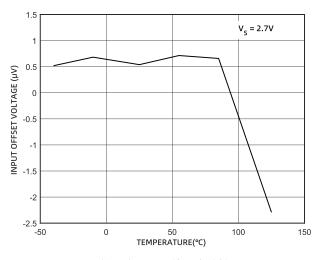


图 23 输入失调电压的温度特性 (2.7V)

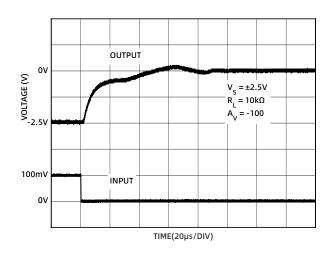


图 20 正过载恢复时间 (5V)

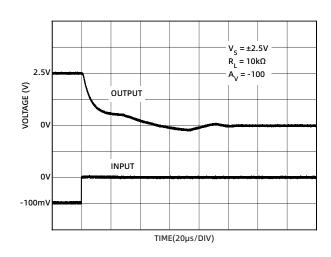


图 22 负过载恢复时间 (5V)

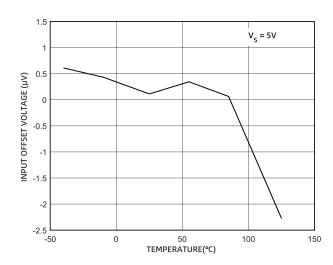


图 24 输入失调电压的温度特性 (5V)

工作原理

CM4141 是一款超高精度的轨到轨输入输出运算放大器,采用单电源供电。该放大器的失调电压典型值仅为 0.5 μV,即使配置为较高增益,也不必担心失调电压过大导致输出饱和。由于温漂接近零,可确保在全温范围内具有极小的失调电压误差,该特性使得该放大器成为各种灵敏测量应用的理想选择。

CM4141 采用自稳零和斩波技术实现高精度。其独特的拓扑结构使 CM4141 能够在宽温度范围和较长的使用寿命周期内保持低失调电压。同时,CM4141 具有较低的低频噪声并且在斩波频率处具有较低的噪声能量,从而在不需要额外滤波的情况下最大限度地提高应用的 SNR。60kHz 内部时钟频率内,CM4141 可维持9nV/√Hz 的平坦等效输入噪声频谱,简化了对后续滤波器的设计要求。

CM4141 采用 SOT23-5 封装使其具有优异的交流参数性能。 CM4141 在 0.1Hz 至 10kHz 的宽带宽范围内具有低噪声,可用于需要高直流精度的应用。在信号带宽为 5kHz 至 10kHz 的系统中,CM4141 提供了真正的 16 位精度,是高分辨率系统的最佳选择。

1/f 噪声

1/f 噪声,也称为闪烁噪声,是直流耦合测量中误差的主要原因。1/f 噪声误差可以是几 µV 或更大,当电路的闭环增益放大时,将产生较大的输出失调电压。例如,当具有 5µVpp 1/f 噪声的放大器配置 1000 的增益时,可以输出 5mV 的失调电压误差。而 CM4141 内部消除了 1/f 噪声,从而大大减少了输出误差。

CM4141 的一大优势是其噪声非常低。如图 25 所示,CM4141 在 1kHz 时的输入参考噪声密度为 $9nV/\sqrt{Hz}$ 。值得一提的是,CM4141 的 1/f 噪声转角频率低至 0.01Hz,可保证系统具有足够低的全带宽内积分噪声。

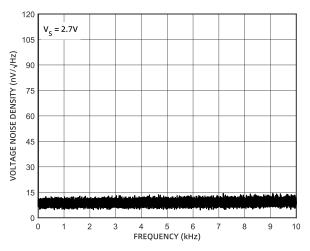


图 25 噪声频谱密度图 (2.7V)

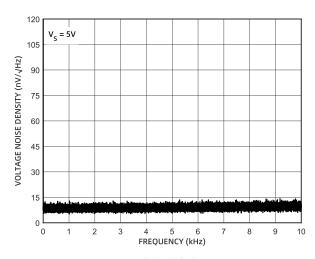


图 26 噪声频谱密度图 (5V)

输出反相

反相是指放大器传递函数的极性发生改变。当在输入端上施加的电压大于最大共模电压时,许多运算放大器都会表现出反相现象。在某些情况下,反相会对放大器造成永久性损坏。在反馈环路中,反相会导致系统功能异常甚至芯片损坏。CM4141 消除了反相问题,即使输入电压高于电源电压也不会产生影响。

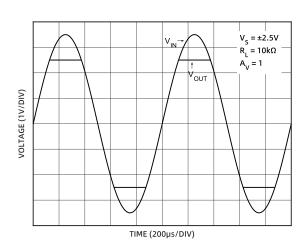


图 27 无反相 (5V)

过载恢复时间

过载恢复时间是指放大器的输出电压从饱和状态恢复到线性响应 区间所需的时间。

恢复时间对许多应用都很重要,尤其是当运算放大器必须在有较大瞬态电压的情况下放大小信号时。

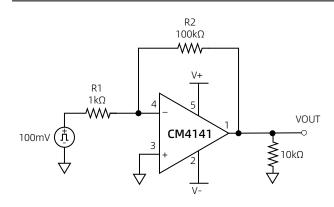
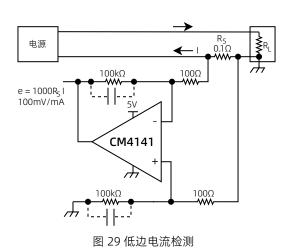


图 28 过载恢复时间的测试电路


电源为 2.7V 时,过载恢复时间为 140 μ s。电源为 5V 时,过载恢复时间为 130 μ s。

应用

电流检测放大器

如图 29 所示,CM4141 应用于精密分流传感器。分流传感器可在反馈控制系统的精密电流源中使用。此外,这种传感器还可在电池电量计、激光二极管功耗测量和控制、电动助力转向中的扭矩反馈控制和精密电能计量等应用中使用。

在此类应用中,建议使用具有极低电阻的分流传感器,从而尽可能的减少串联压降和功率浪费,实现低功耗损失下测得最大的电流。典型的分流传感器的电阻通常为 0.1Ω。被测电流值为 1A时,分流传感器的输出信号是数百毫伏,甚至是几伏,因此放大器并不是主要误差源。当电流测量值低于 1mA时,分流传感器的 100μV 输出电压需要极低失调电压和温漂,以保持绝对精度。另外,还需要低输入偏置电流,确保偏置电流在所测电流中的比例较小。高开环增益、高 CMRR 和高 PSRR 帮助维持电路的整体精度。只要电流的变化速率不是太快,自稳零放大器就可以提供出色的结果。

DAC 的输出放大器

CM4141 在单极配置时,可以作为 16 位高精度 DAC CM7501 的输出放大器。当基准电压为 2.5V 时,CM7501 的 1LSB 电压值为 38μV,CM4141 典型失调电压为 0.5μV,因此无需校准输出失调电压。输入偏置电流(通常几十 pA)也必须非常低,因为当它乘以 CM7501 输出阻抗(大约 6kΩ)时会产生额外的 0 码误差。

CM4141 的高带宽性能也非常适用。CM4141 的建立时间为 1µs, CM7501 的建立时间也为 1µs, 两者结合的建立时间大约为 1.4µs, 可以从如下公式得出:

$$t_{s} = \sqrt{(t_{s}DAC)^{2} + (t_{s}CM4141)^{2}}$$

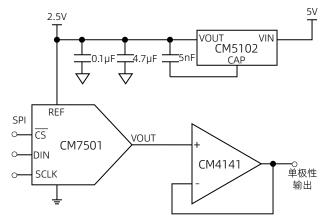
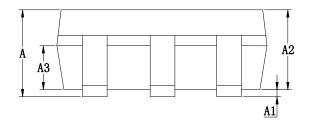
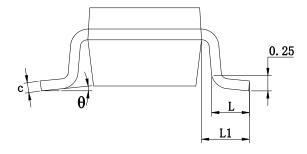
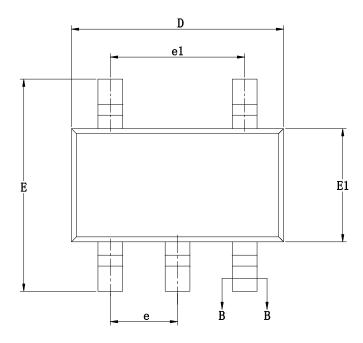
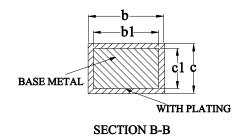


图 30 作为输出放大器


封装及订购信息


封装形式


CM4141 采用 SOT23-5 封装。


产品外形图

产品外形图如下图所示。

+=>n		尺寸 (毫米)			
标识	最小值	典型值	最大值		
А	-	-	1.25		
A1	0.04	0.07	0.10		
A2	1.00	1.10	1.20		
A3	0.60	0.65	0.70		
b	0.33	0.37	0.41		
b1	0.32	0.35	0.38		
С	0.15	0.17	0.19		
c1	0.14	0.15	0.16		
D	2.82	2.92	3.02		
E	2.60	2.80	3.00		
E1	1.50	1.60	1.70		
е	0.95 (BSC)				
e1	1.90 (BSC)				
L	0.30	0.45	0.60		
L1	0.60 (REF)				
θ	0°	4°	8°		

订购信息

型号	温度范围	封装	包装	包装数量
CM4141-SOTTA	-40°C~125°C	SOT23-5	Reel	3000