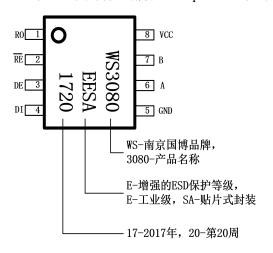


RS485 通讯接口芯片


产品介绍

南京国博电子股份有限公司研制的 WS3080 是 5V、半双工、±15kV ESD 保护的 RS-485/RS-422 收发器电路,电路内部包含一路驱动器和一路接收器。

WS3080 具有增强的摆率限制,有助于降低输出 EMI 以及不匹配的终端连接引起的反射,实现 500kbps 的无误码数据传输。

WS3080 芯片接收器输入阻抗为 1/8 单位 负载,允许多达 256 个收发器挂接在总线上, 实现半双工通信。所有驱动器输出提供± 15kV 人体模式 ESD 保护,采用 8 脚 MSOP 封 装,工作于-40℃至+125℃温度范围。

产品的结构及引脚图(Top View)如下;

WS3080 引脚图—8-pin MSOP (Top View)

WS3080

5V 500Kbps RS485 通讯接口芯片

8-pin MSOP 封装

产品特征

- •5V 电源电压
- 增强摆率限制有助于降低输出 EMI 以及不匹配的终端连接引起的反射, 实现 500kbps 的无误码数据传输
- •通信端口提供±15kV 人体模式 ESD 保护
- Fail-safe 功能
- 具有 1/8 单位负载,多达 256 个收发器可挂接在同一总线上
- 采用 8 脚 MSOP 封装

应用

- 隔离型 RS-485 接口
- 申表
- 工业控制
- 工业电机驱动
- 自动 HVAC 系统

China·Nanjing City ·No.166 Middle Zhengfang Road Tel: +86-25-68005828 Fax: +86-25-68005835 Email: support@njgwdz.net

RS485 通讯接口芯片

表 1: WS3080 电性能

(VCC = +5V ± 5%, 环境温度为 +25°C.)

参数	符号	条件		最小	典型	最大	单位
驱动器					1		
差分驱动输出(无负载)	VOD1	图 1			5		伏
<u> </u>	Vana	图 1, R=50Ω(RS-	422)	2.0			//>
差分驱动输出	VOD2	图 1, R=27Ω(RS-	图 1, R=27Ω(RS-485)				伏
差分输出幅值变化(注1)	ΔVOD	图 1, R =50 Ω orR	=27Ω			0.2	伏
驱动器输出共模电平	Voc	图 1, R=50 Ω orR=	-27Ω	1		3	伏
驱动器输出共模电平变化	ΔVOC	图 1, R=50 Ω orR=	-27Ω			0.2	伏
输入高电平	VIH1	DE, DI, RE	,	2.0			伏
输入低电平	VIL1	DE, DI, \overline{RE}	Ī			0.8	伏
输入迟滞	VHYS	DE, DI, \overline{RE}	Ī		100		毫仂
输入电流	I _{IN1}	DE, DI, \overline{RE} ($\dot{\gamma}$	È 2)			±2	微多
输入电流(A 与 B)	IIN4	DE = GND,	V _{IN} =12V			125	微多
個人中心(u 一) D)	111/4	VCC=GNDor5.25V	V _{IN} =-7V	-75			顶多
		$-7V \leqslant V_{OUT} \leqslant V$	CC	-100			毫安
驱动器输出短路电流	IOD1	0V≤V _{OUT} ≤12	2V			100	毫安
		ov≤v _{our} ≤v _o	CC	±25			毫安
接收器							
接收器差分输入阈值电压	V _{TH}	-7V≤V _{CM} ≤+1	2V	-200		-50	毫伊
接收器差分输入阈值电压迟滞	ΔVTH				60		毫伊
接收器输出高电平	VOH	I _O =-4mA, V _{ID} =1V		4			伏
接收器输出低电平	VOL	IO=4mA, VID=-	1V			0.4	伏
接收器输出高阻态漏电流	IOZR	0.4V≤V0≤2.4V				±1	微多
接收器输入阻抗	RIN	-7V≤V _{CM} ≤+1	2V	96			千図 姆

 $\begin{array}{lll} \mbox{China\cdot Nanjing City \cdot No.166 Middle Zhengfang Road} & \mbox{Tel: +86-25-68005828} & \mbox{Fax: +86-25-68005835} \\ \mbox{Email: } & \mbox{support@njgwdz.net} & \mbox{2} & \m$

南京国微电子有限公司 RS485 通讯接口芯片								
接收器输出短路电流	IOSR	0V≪V _{R0} ≪V _{CC}		±7		±95	毫安	
供电电流								
数七世十七 次	Tag	No load,	\overline{RE} =DE=VCC		450	600	Alit.	
静态供电电流	ICC	DI=GND or Vcc	\overline{RE} =DE=GND		450	600	微安	
关断电流	ISHDN	$DE = GND, \overline{D}$	$\overline{RE} = V$ cc		1.8	10	微安	
静态保护特性								
		接触放电	1模型	±12				
静电保护(A管脚,B管脚)		IEC 6100	IEC 61000-4-2				千伏	
		人体梈	草型	±15				
静电保护(其他管脚)		人体核	草型	±4			千伏	

注 1: ΔVOD 和 ΔVOC是当DI改变时 VOD 和VOC的各自变化量。

注 2: 所有流入器件的电流为正,流出器件的电流为负;如无特殊说明,所有电压以地为参考点。

(VCC = +3.3V ± 5%, 除非特殊说明, 典型值为 VCC= +3.3V, 环境温度为 +25°C.)

参数	符号	条件		最小	典型	最大	单位
驱动器					,		
差分驱动输出(无负载)	V _{OD1}	图 1			3.3		伏
差分驱动输出	VOD2	图 1, R=50 Ω (RS-	422)	1.8		Vcc	伏
左刀 亚列 相 山	VOD2	图 1, R=27 Ω (RS-	485)	1.4		Vcc	7/
 差分输出幅值变化(注3)	ΔVOD	图 1, R =50 Ω orR=	=27Ω			0.2	伏
驱动器输出共模电平	VOC	图 1, R=50 Ω orR=	图 1, R=50 Ω orR=27 Ω			3	伏
驱动器输出共模电平变化	ΔVOC	图 1, R=50 Ω orR=	27Ω			0.2	伏
输入高电平	V _{IH1}	DE, DI, \overline{RE}		2.0			伏
输入低电平	V _{IL1}	DE, DI, \overline{RE}	-			0.8	伏
输入迟滞	VHYS	DE, DI, \overline{RE}			100		毫伏
输入电流	IIN1	DE, DI, $\overline{\mathit{RE}}$ (注 4)				±2	微安
输入电流(A 与 B)	TIMA	DE = GND,	VIN=12V			125	独立
- 棚八电弧(A 与 B)	IIN4	VCC=GNDor5.25V	V _{IN} =-7V	-75			微安

China·Nanjing City·No.166 Middle Zhengfang Road Tel: +86-25-68005828 Fax: +86-25-68005835 Email: support@njgwdz.net 3

南京国微电子有限公司 RS485 通讯接口芯片							芯片
		-7V≤V _{OU} ′	L≪ACC	-100			毫安
驱动器输出短路电流	IOD1	0V≪V _{OUT}	:≤12V			100	毫安
		0V≪V _{OUT}	e≤VCC	±25			毫安
接收器						1	1
接收器差分输入阈值电压	VTH	-7V≤VCM	-7V≤VCM≤+7V			-50	毫伏
接收器差分输入阈值电压迟滞	ΔVTH				60		毫伏
接收器输出高电平	VOH	IO=-4mA, VID=1V		VCC-0.4			伏
接收器输出低电平	VOL	IO=4mA, V	IO=4mA, VID=-1V			0.4	伏
接收器输出高阻态漏电流	IOZR	0. 4V≤V ₀ :	≤2.4V			±1	微安
接收器输入阻抗	RIN	-7V≤V _{RIN}	≤+12V	96			千欧 姆
接收器输出短路电流	IOSR	0V≪V _{RO} :	≪VCC	±7		±95	毫安
供电电流						,	•
	_	No load,	\overline{RE} =DE=VCC		370	600	dia .) .
静态供电电流	ICC	DI=GND or Vcc	\overline{RE} =DE=GND		370	600	微安
关断电流	ISHDN	$DE = GND, \overline{RE} = Vcc$			1.8	10	微安
静态保护特性							
静电保护(A管脚,B管脚)		接触放电模型 IEC 61000-4-2		±12			千伏
		人体模	草型	±15			
静电保护(其他管脚)		人体核	· 型	±4			千伏

注 3: ΔVOD 和 ΔVOC是当DI改变时 VOD 和VOC的各自变化量。

注 4: 所有流入器件的电流为正,流出器件的电流为负;如无特殊说明,所有电压以地为参考点。

表 2: WS3080 开关特性

(VCC = +5V ± 5%, 环境温度为 +25°C.)

参数	符号	条件		典型	最大	单位
驱动器输入输出延时	tDPLH	图 3 和 5, RDIFF=54 欧姆,	250	720	1000	加利
	tDPHL	CL=54pF	250	720	1000	纳秒
驱动器输入输出延时之差	+DCKEW	图 3 和 5, RDIFF=54 欧姆,		-3	+100	纳秒
沁幼命制八制田延門之左	tDSKEW	CL1=CL2=100pF		_3	100	471179

 $\begin{array}{lll} \mbox{China: Nanjing City: No.166 Middle Zhengfang Road} & \mbox{Tel: +86-25-68005828} & \mbox{Fax: +86-25-68005835} \\ \mbox{Email: } & \mbox{support@njgwdz.net} & \mbox{4} \end{array}$

南京国微电子有限公司

RS485 通讯接口芯片

驱动器上升、下降时间	tDR, tDF	图 3 和 5, RDIFF=54 欧姆,	400	700	1200	纳秒
2009年11月	con, cor	CL1=CL2=100pF	100	100	1200	N11D
最大速率	fmax			500		kbps
驱动器使能到输出为高电平	tDZH	图 4 和 6, CL=100pF, S2 关断			2500	纳秒
驱动器使能到输出为低电平	tDZL	图 4 和 6, CL=100pF, S1 关断			2500	纳秒
驱动器从输出低到关断时间	tDLZ	图 4 和 6, CL=15pF, S1 关断			500	纳秒
驱动器从输出高到关断时间	tDHZ	图 4 和 6, CL=15pF, S2 关断			500	纳秒
接收器输入输出延时	tRPLH	图7和9; VID ≥2.0V; VID上		125		纳秒
以证明八册四年	tRPHL	升下降时间小于15纳秒		120	250	X11/2
tRPLH - tRPHL 接收器	tRSKD	图7和9; VID ≥2.0V; VID上		10	±50	纳秒
输入输出延时之差	rusud	升下降时间小于15纳秒		10	1.30	<i>\$13119</i>
接收器使能到输出低	tRZL	图 2 和 8, CL= 100pF, S1 关断		20	120	纳秒
接收器使能到输出高	tRZH	图 2 和 8, CL=100pF, S2 关断		20	120	纳秒
接收器从输出高到关断	tRZL	图 2 和 8, CL=100pF, S1 关断		20	120	纳秒
接收器从输出低到关断	tRHZ	图 2 和 8, CL=100pF, S2 关断		20	120	纳秒
芯片关断时间	tSHDN	(注 5)	50	200	600	纳秒
从芯片关断到驱动器使能, 到输出为高电平	tDZH(SH DN)	图 4 和 6, CL=15pF, S2 关断			4500	纳秒
从芯片关断到驱动器使能, 到输出为低电平	tDZL(SH DN)	图 4 和 6, CL=15pF, S1 关断			4500	纳秒
从芯片关断到接收器使能, 到输出为高电平	tRZH(SH DN)	图 2 和 8, CL=100pF, S2 关断			3500	纳秒
从芯片关断到接收器使能, 到输出为低电平	tRZL(SH DN)	图 2 和 8, CL=100pF, S1 关断			3500	纳秒

注 5: 当 RE =1, DE=0 时, WS3080 进入关断状态。如果这个状态维持时间小于 50 纳秒,则芯片不会进入关断状态。如果这个状态维持时间超过 600 纳秒,芯片确保进入关断状态。

(VCC=+3.3V±5%,除非特殊说明,典型值为 VCC=+3.3V,环境温度为 +25°C.)

, 14 II 14 % 3 5 % X 1 = 12 X						
参数	符号	条件	最小	典型	最大	单位
驱动器输入输出延时	tDPLH	图 3 和 5, RDIFF=54 欧姆,	250	400	1000	纳秒
亚列帕制八相山 延时	tDPHL	CL=54pF	250	400	1000	<i>\$13179</i>
驱动器输入输出延时之差	+DCKEM	图 3 和 5, RDIFF=54 欧姆,			±100	纳秒
业 列 奋 棚 八 棚 山 延 門 之 左	tDSKEW	CL1=CL2=100pF			100	47179
驱动器上升、下降时间	+DD +DD	图 3 和 5, RDIFF=54 欧姆,	400	500	1200	かまん
30公) 奋工刀、下阵时间	tDR, tDF	CL1=CL2=100pF	400	300	1200	纳秒
最大速率	fmax			500		kbps
驱动器使能到输出为高电平	区动器使能到输出为高电平 tDZH 图 4 和 6, CL=100pF, S2 关断				2500	纳秒
驱动器使能到输出为低电平 tDZL 图 4 和 6, CL=100pF, S1		图 4 和 6, CL=100pF, S1 关断			2500	纳秒
驱动器从输出低到关断时间	tDLZ	图 4 和 6, CL=15pF, S1 关断			500	纳秒

China·Nanjing City·No.166 Middle Zhengfang Road Tel: +86-25-68005828 Fax: +86-25-68005835 Email: support@njgwdz.net 5

南京国微电子有限公司

RS485 通讯接口芯片

驱动器从输出高到关断时间	tDHZ	图 4 和 6, CL=15pF, S2 关断			500	纳秒
接收器输入输出延时	tRPLH tRPHL	图7和9; VID ≥2.0V; VID上 升下降时间小于15纳秒		125	250	纳秒
tRPLH - tRPHL 接收器 输入输出延时之差	tRSKD			20	±50	纳秒
接收器使能到输出低	tRZL	图 2 和 8, CL= 100pF, S1 关断		20	120	纳秒
接收器使能到输出高	tRZH	图 2 和 8, CL=100pF, S2 关断		20	120	纳秒
接收器从输出高到关断	tRZL	图 2 和 8, CL=100pF, S1 关断		20	120	纳秒
接收器从输出低到关断	tRHZ	图 2 和 8, CL=100pF, S2 关断		20	120	纳秒
芯片关断时间	tSHDN	(注 6)	50	200	600	纳秒
从芯片关断到驱动器使能, 到输出为高电平	tDZH(SH DN)	图 4 和 6, CL=15pF, S2 关断			8000	纳秒
从芯片关断到驱动器使能, 到输出为低电平	tDZL(SH DN)	图 4 和 6, CL=15pF, S1 关断			8000	纳秒
从芯片关断到接收器使能, 到输出为高电平	tRZH(SH DN)	图 2 和 8, CL=100pF, S2 关断			8000	纳秒
从芯片关断到接收器使能, 到输出为低电平	tRZL(SH DN)	图 2 和 8, CL=100pF, S1 关断			8000	纳秒

注 6: 当 RE =1, DE=0 时, WS3080 进入关断状态。如果这个状态维持时间小于 50 纳秒,则芯片不会进入关断状态。如果这个状态维持时间超过 600 纳秒,芯片确保进入关断状态。

测试电路图

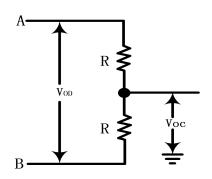


图 1 驱动器直流特性测试负载

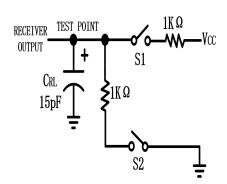


图 2 接收器使能/关断 开关特性测试负载

China·Nanjing City·No.166 Middle Zhengfang Road Tel: +86-25-68005828 Fax: +86-25-68005835 Email: support@njgwdz.net 6

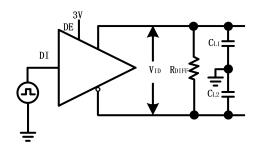


图 3 驱动器开关特性测试电路

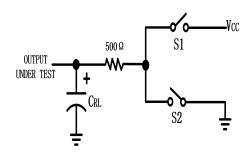


图 4 驱动器使能/关断 开关特性测试负载



图 5 驱动器传输延时

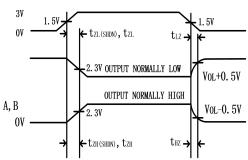


图 6 驱动器使能/关断时序

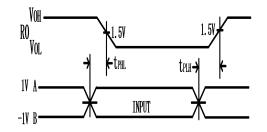


图 7 接收器传输延时

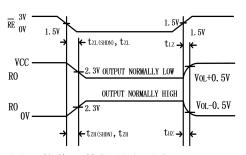


图 8 接收器使能/关断时序

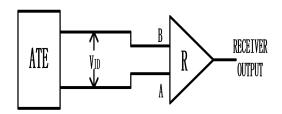
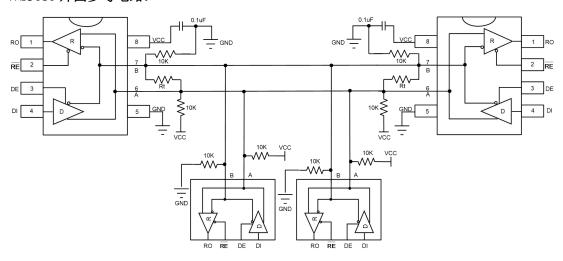



图 9 接收器传输延时测试电路

China·Nanjing City ·No.166 Middle Zhengfang Road Tel: +86-25-68005828 Fax: +86-25-68005835 Email: support@njgwdz.net

WS3080 外围参考电路:

Rt 为特征匹配阻抗,典型值为 120Ω

图 10 WS3080 和 RS-485 典型的半双工工作电路

表 3: WS3080 引脚定义

管脚	名称	功能
1	RO	接收器输出,接收器使能时,极性判断完成后,若V(A)-V(B)>-50mV, RO输出高电平;
		若 V(A)-V(B)<-200mV, RO 输出低电平。其中 A 与 B 为极性判断完成后芯片的同相和
		反相端。
2	\overline{RE}	接收器输出使能, \overline{RE} 接低电平时 RO 输出有效; \overline{RE} 接高电平时,接收器关断。 \overline{RE}
		为高电平, DE 为低电平,整个芯片处于关断状态。
3	DE	驱动器输出使能,DE置为高电平时,驱动器使能;DE置为低电平时,驱动器关断,驱
		动器输出为高阻态。 \overline{RE} 为高电平, DE 为低电平,整个芯片处于关断状态。
4	DI	驱动器输入,DI 为低电平时强制同相输出为低电平,反相输出为高电平; DI 为高电平
		时强制同相输出为高电平,反相输出为低电平。
5	GND	地
6	A	总线接口,驱动器同相输出端,接收器同相输入端。
7	В	总线接口,驱动器反相输出端,接收器反相输入端。
8	V_{cc}	正电源,采用一只 $0.1 \mu F$ 电容旁路 V_{CC} 至 GND

表 4: WS3080 真值表

	发射							
输入								
\overline{RE}	DE	DI	B A					
X	1	1	0	1				
X	1	0	1	0				
0	0	X	高阻	高阻				

China·Nanjing City ·No.166 Middle Zhengfang Road Tel: +86-25-68005828 Fax: +86-25-68005835 Email: support@njgwdz.net 8

南京国微电子有限公司 RS485 通讯接口芯片 1 0 X 关断

	接收									
	I输入									
\overline{RE}	DE	A-B	RO							
0	X	≥ -50mV	1							
0	X	≤ -200mV	0							
0	X	Open/shorted	1							
1	1	X	高阻							
1	0	X	关断							

表 5: WS3080 最大工作条件范围 (注 1)

特性	符号	最小限定值	典型值	最大限定值	单位
最大工作电压	V_{CC}			7	V
逻辑脚电压	DE, RE, DI, RO	-0.3		7	V
总线脚电压	A, B	-8		13	$^{\circ}\!\mathbb{C}$
存储温度	T_{STG}	-65		+150	$^{\circ}\!\mathbb{C}$
最高结温	T_{J}			+150	$^{\circ}\!\mathbb{C}$
ESD-HBM	ESD-HBM	2000			V

注1:工作条件超过以上任何一个限制都可能导致器件的永久性损坏。

表 6: WS3080 推荐工作条件范围 (注 2)

特性	符号	最小限定值	典型值	最大限定值	单位
推荐工作电压	$V_{ m DD}$	4.75	5	5.25	V
工作温度	T_A	-40		+125	$^{\circ}\!\mathbb{C}$

注 2: 超出推荐工作温度范围下工作可能会导致器件的性能恶化。

警告: 该产品为静电敏感器件,在贮存、运输、使用过程中需全程采取防静电措施。

ESD sensitive 注意: WS3080 产 品在拿取、装架以 及测试过程中必 须防静电!

China·Nanjing City·No.166 Middle Zhengfang Road Tel: +86-25-68005828 Fax: +86-25-68005835 Email: support@njgwdz.net 9

南京国微电子有限公司总线负载 256 个收发器

RS485 通讯接口芯片

标准 RS-485 接收器的输入阻抗为 12KΩ(1 个单位负载),标准驱动器可最多驱动 32 个单位负载。WS3080 具有 1/8 单位负载的输入阻抗(96KΩ),允许最多 256 个收发器挂接在同一总线上。这些器件可任意组合,或者与其他 RS485 收发器组合使用,只要总负载不超过 32 个单位负载即可挂接在同一总线。

低功耗关断模式

 \overline{RE} 为高电平,DE 为低电平,芯片进入低功耗关断模式。关断电流典型值为 1.8 微安。 \overline{RE} 和 DE 可以同时驱动,典型工作电流为 150uA;如果 \overline{RE} 为高电平,DE 为低电平保持时间小于 50 纳秒,芯片不会进入关断模式;如果保持时间超过 600 纳秒,芯片会确保进入关断模式。

驱动器输出保护

两种机理实现过大电流和功耗过大保护。一个是过流保护电路,当正常驱动总线时,由于总线异常导致芯片电流过大时,芯片内部的过流保护电路起作用,来保证驱动电流不会超过一定条件下的设定值。另一个是过温保护,当芯片功耗太大,温度上升时,过温保护电路保证芯片不会损坏。如果芯片进入过温保护状态,驱动器输出为高阻态。

典型应用

WS3080 应用于双向数据通信的多点网络。图 10 给出了典型的应用网络。为了降低反射,应当在传输线的两端以其特性阻抗进行终端匹配,主干线以外的分支线路的长度应尽可能短。

静电保护

WS3080 的所有管脚均具有静电泄放保护电路来防止人手触摸或者装配时的 ESD 事件对芯片造成损坏。驱动器的输出和接收器的输入管脚采用增强的 ESD 保护电路,这些管脚可以抵抗±15kV 的人体模式 ESD 冲击而不会损坏。所有 ESD 保护电路在正常工作时均处于关断状态,并不消耗电流。ESD 事件后,WS3080 可以保证正常工作,而不会出现闩锁或损坏情况。

ESD 保护性能测试方法有很多种。驱动器的输出和接收器的输入采用如下 ESD 测试方法来衡量 ESD 性能: 1) ±15kV 人体模型 2) ±12kV IEC61000-4-2 接触放电。

China·Nanjing City ·No.166 Middle Zhengfang Road Tel: +86-25-68005828 Fax: +86-25-68005835 Email: support@njgwdz.net

封装尺寸

MSOP8 Package Dimension

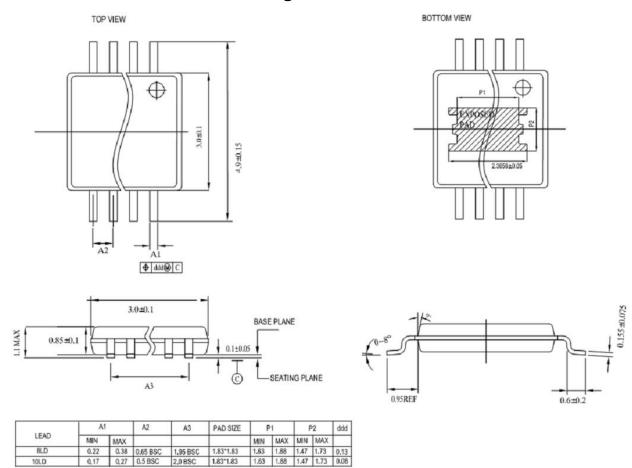


图 11 器件封装信息

包装信息

器件型号	封装形式	卷带 数量	卷带尺寸	MSL	是否贴湿 敏标签	烘烤时 间/小时	烘烤温度
WS3080	MSOP8	5000	13 英寸	3	贴	6	125

China·Nanjing City ·No.166 Middle Zhengfang Road Fax: +86-25-68005835 Tel: +86-25-68005828 Email: support@njgwdz.net 11

南京国微电子有限公司

RS485 通讯接口芯片

版本信息

版本	日期	信息描述	拟制	审核	会签	批准
v1. 0	2013. 11	最初版本	黄德文	郭玮	徐慧/许悦	朱波
v1. 1	2021. 11	修改模板	黄德文	郭玮	徐慧/许悦	朱波

China·Nanjing City ·No.166 Middle Zhengfang Road Tel: +86-25-68005828 Fax: +86-25-68005835 Email: support@njgwdz.net