

Very High PSRR Low Noise 500mA RF LDO

Features

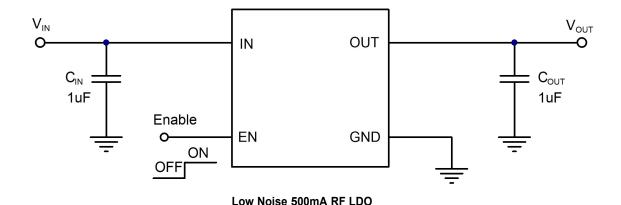
- Wide Input Voltage Range: 2.0V to 6V
- Up to 500mA Load Current
- Output Voltage Options Available on Request
- Very Low IQ: 36μA
- Very High PSRR: 75db at 1KHz
- Ultra Low Noise: 45uVrms at 1.2V output
- Ultra-Fast Start-Up Time: 25µs
- Excellent Load/Line Transient Response
- Line Regulation: 0.03% typical
- Standard Fixed Output Voltage Options: 1.2V, 1.5V,

1.6V, 1.8V, 2.5V, 2.8V, 3.0V, and 3.3V,etc

 Ultra Low Dropout: 250mV at 300mA Load@VOUT= 2.8V

Description

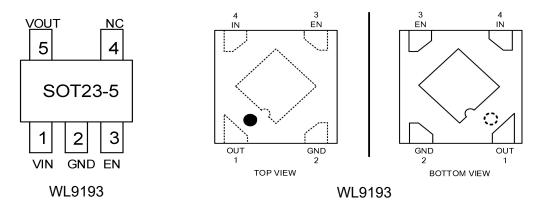
The WL9193 family of low-dropout (LDO), low-power line ar regulators offers very high power supply rejection ratio (PS RR) while maintaining very low 40μA ground current, suitable for RF applications. The family uses an advanced CMOS process and a PMOSFET pass device to achieve fast start-up, very low noise, excellent transient response, and excellent PSRR performance. The WL9193 is stable with a 1.0μF ceramic output capacitor, and uses a precision voltage reference and feedback loop to achieve a worst-case accuracy of 2% over all load, line, process, and temperature variations. It is fully specified from TJ=–40°C to +150°C and is offered in a small DFN4 package, which is ideal for small form factor portable equipment such as wireless handsets and PDAs.


Applications

- Digital Still Cameras
- Portable instruments
- MP3/MP4 Player
- Smart Phones and Cellular Phones

Part No	Package	Body Sise(NOM)
WL9193S5-XX	SOT23-5	2.9mm*2.8mm
WL9193D4-XX	DFN4	1.0mm*1.0mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.


Typical Application

Ver 1.52 www.wpmtek.com

Pin Configuration and Functions

Pin Functions

SOT23-5:

Pin No.	Pin Name	Pin Function	
1	IN	Supply input pin. Must be closely decoupled to GND with a 1µF or greater ceramic capacitor	
2	GND	Ground pin	
3	EN	Enable control input, active high. Do not leave EN floating	
4	NC	No Connection	
5	OUT	Output pin. Bypass a 1µF ceramic capacitor from this pin to ground	

DFN4:

Pin No.	Pin Name	Pin Function
4	IN	Supply input pin. Must be closely decoupled to GND with a 1µF or greater ceramic capacitor
2	GND	Ground pin
3	EN	Enable control input, active high. Do not leave EN floating
1	OUT	Output pin. Bypass a 1µF ceramic capacitor from this pin to ground

Absolute Maximum Ratings

Para	meter	Rating	Unit
IN V	oltage	-0.3 to 6.5	V
Other Pi	n Voltage	-0.3 to Vin+0.3	V
Maximum L	oad Current	500	mA
Operating Juncti	Operating Junction Temperature		°C
Storage Te	Storage Temperature		°C
Lead Temperature ((Soldering, 10 sec)	300	°C
Thermal Resistance	SOT23-5	200	°C /\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
(Junction to Ambient) DFN4		300	°C/W
Dawan Diaginatian	SOT23-5	600	
Power Dissipation	DFN4	400	mW

Note:

exceeding the range specified by the rated parameters will cause damage to the chip, and the working state of the chip beyond the range of rated parameters cannot be guaranteed. Exposure outside the rated parameter range will affect the reliability of the chip.

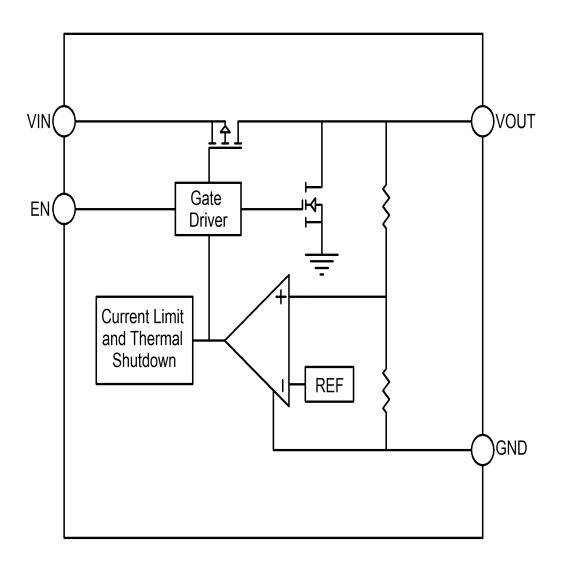
Recommended Operating Conditions

Symbol	Item	Rating	Unit
Vin	Input Voltage	2.0 to 6	V
Іоит	Output Current	0 to 500	mA
TA	Operating Ambient Temperature	-40 to 85	°C
Cin	Effective Input Ceramic Capacitor Value	0.47 to 4.7	uF
Соит	Effective Output Ceramic Capacitor Value	0.47 to 4.7	uF
ESR	Input and Output Capacitor Equivalent Series Resistance	5 to 100	mΩ

Electrical Characteristics

 $(V_{\text{IN}} = V_{\text{EN}} = V_{\text{OUT}} + 1.0V, \ lout = 1 \text{mA}, \ C_{\text{IN}} = 1 \mu F, C_{\text{OUT}} = 1 \mu F, \ Typical \ values \ are \ at \ T_{\text{A}} = 25 ^{\circ}\text{C} \ unless \ otherwise \ noted)$

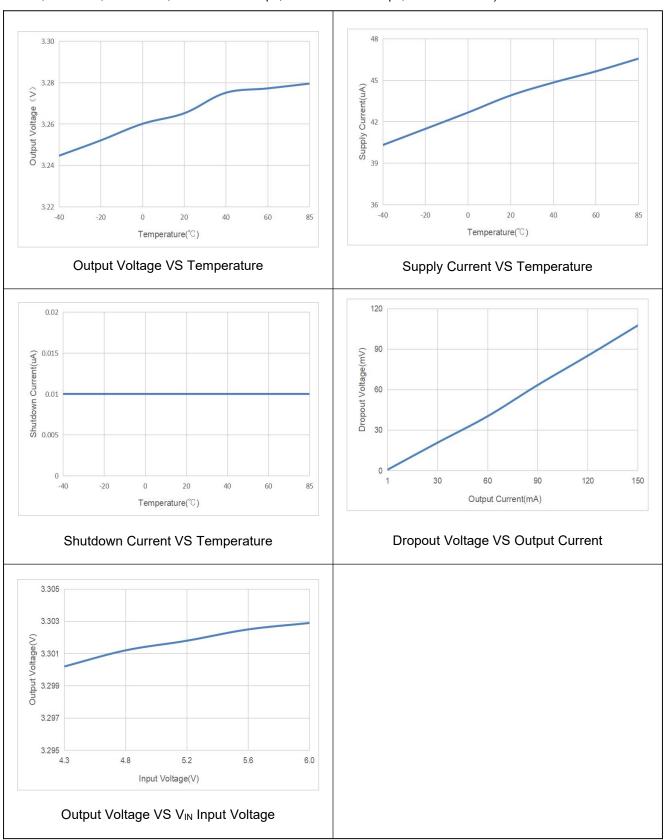
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Input Voltage	Vin		2.0		6	V
Operation Range	VIIV		2.0		0	V
		Vouт = 1.05V, louт = 300mA		750	850	
		Vоит = 1.2V, Iоит = 300mA		700	800	
		Vоит = 1.3V, louт = 300mA		700	800	
		Vоит = 1.5V, Iоит = 300mA		600	730	
		Vоит = 1.6V, Iоит = 300mA		500	650	
Dropout Voltage	VDROP	Vоит = 1.7V, Iоит = 150mA		450	620	mV
		Vоит = 1.8V, Iоит = 300mA		380	520	
		Vоит = 2.2V, Iоит = 300mA		350	490	
		Vout = 2.5V, lout = 300mA		280	450	
		Vоит = 2.8V, Iоит = 300mA		250	400	
		Vouт = 2.9V, Iouт = 300mA		250	400	
		Vouт = 3.0V, louт = 300mA		240	390	
		Vоит = 3.3V, Iоит = 300mA		210	360	
		Vоит = 3.45V, Iоит =300mA		200	350	
DC Supply	1	A stirre mandar Marra Ma		20		
Quiescent Current	IQ_ON	Active mode: VEN=VIN		36	60	μA



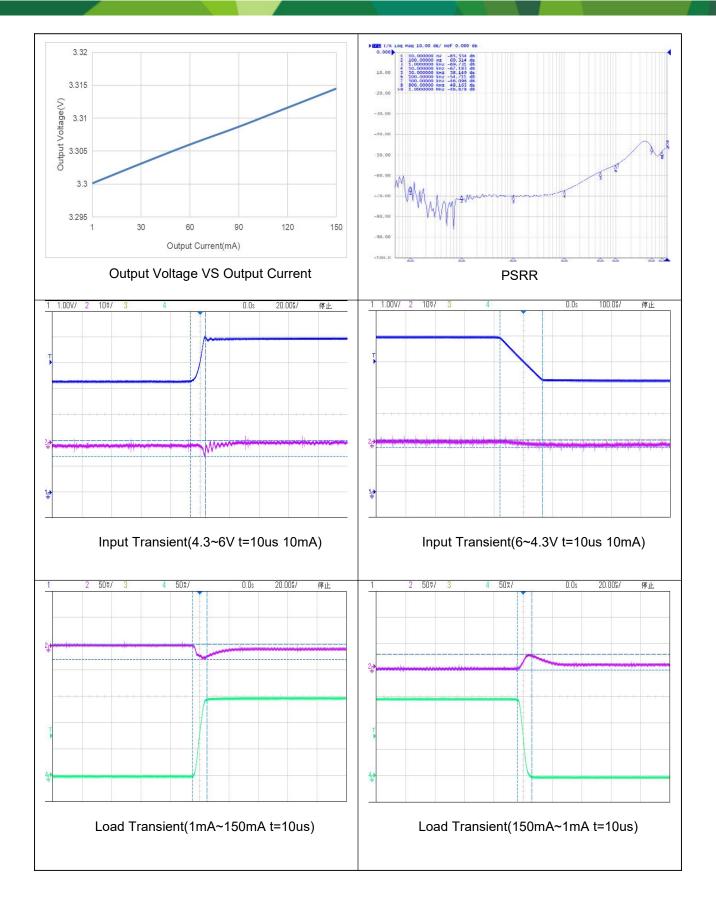
Electrical Characteristics(Continued)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
DC Supply	I Q OFF	V _{EN} =0V		0.01	1	μA
Shutdown Current	IQUFF	VEN-OV		0.01	'	μΛ
Regulated Output Voltage	Vouт	Iouт=1mA, -40°C≤Ta≤85°C	-2		2	%
Output Voltage	Regline	VIN = VOUT +1V to 5.5V,		0.03	0.2	%
Line Regulation	rtegline	louт = 10mA		0.03	0.2	70
Output Voltage	RegLOAD	louт from 1mA to 300mA		0.2	0.7	%
Load Regulation	INEGLOAD	1001 HOIT THA to 300HA		0.2	0.7	70
Current Limit	Інм			500		mA
Power Supply	PSRR	f=1kHz, Cоит=1µF, Iоит=20mA		75		dB
Rejection Ratio	FOINI	f=10kHz, Cουτ=1μF, Ιουτ=30mA		65		ub ub
		10Hz to 100kHz,				
		Іоит =200mA,Vоит=2.8V,		70		
Output Noise	ем	Соυт = 1μF				µVкмs
		10Hz to 100kHz,				
		Іоит =200mA,Vоит=1.2V,		45		
		Соит = 1µF				
Soft-start Time	Ton	From Enable to Power On		25		μs
EN Low Threshold	VENL				0.3	V
EN High Threshold	VENH		1.5			V
EN pull-down resistance	RPD		0.8	1	1.3	МΩ
Over-temperature	Trsd			155		°C
Shutdown Threshold	IISD			100		
Over-temperature	Trsr			20		°C
Shutdown Hysteresis	ITSK			20		

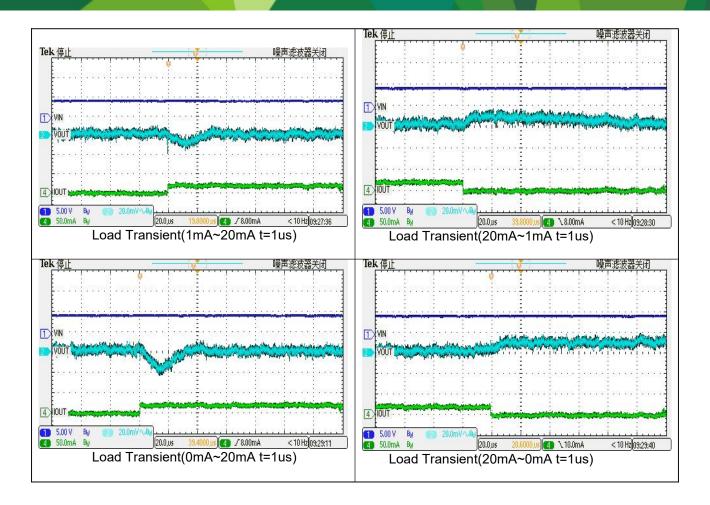
Functional Block Diagram



Functional Block Diagram



Typical Characteristics


(WL9193, $V_{IN} = 4.3V$, $I_{OUT} = 1 \text{mA}$, $C_{IN} = \text{Ceramic } 1.0 \mu\text{F}$, $C_{OUT} = \text{Ceramic } 1.0 \mu\text{F}$, $T_{A} = -40 \,^{\circ}\text{C} \sim 85 \,^{\circ}\text{C}$)

Detailed Description

Overview

The WL9193 series products are 500mA wide input voltage range linear regulators.

These voltage regulators operate from 2V to 6V DC input voltage with supporting 6V transient input voltage and consume $40\mu A$ quiescent current at no load.

The WL9193 series products also provide enable control and Power-Good feature, which is very suitable for the applications needing sequence configuration. Other protection features include the VIN input under-voltage lockout, over current protection, output hard short protection and thermal shutdown protection.

The WL9193 series products are available in fixed voltage versions of 1.2V,1.5V,1.6V,1.8V, 2.5V,2.8V,3.0V and 3.3V with 1% output voltageaccuracy at room temp and 2% output voltage accuracy over operating conditions. The WL9193 series available in standard fixed output voltages of 1.2V, 1.3V, 1.5V, 1.6V, 1.7V, 1.8V, 2.2V, 2.5V, 2.9V, 3.0V, 3.3V, 3.45V and custom voltage options (50mV step options between 0.8V and 5.0V are available upon request).

Input Capacitor

A 1µF ceramic capacitor is recommended to connect between VIN and GND pins to decouple input power supply glitch and noise. The amount of the capacitance may be increased without limit. This input capacitor must be located as close as possible to the device to assure input stability and less noise. For PCB layout, a wide copper trace is required for both VIN and GND.

Output Capacitor

An output capacitor is required for the stability of the LDO. The recommended output capacitance is from $1\mu F$ to $2.2\mu F$, Equivalent Series Resistance (ESR) is from $5m\Omega$ to $100m\Omega$, and temperature characteristics are X7R or X5R. Higher capacitance values help to improve load/line transient response. The output capacitance may be increased to keep low undershoot/overshoot. Place output capacitor as close as possible to OUT and GND pins.

ON/OFF Input Operation

The WL9193 is turned on by setting the EN pin high, and is turned off by pulling it low. If this feature is not used, the EN pin should be tied to IN pin to keep the regulator output on at all time.

High PSRR and Low Noise

RF circuits such as LNA (low-noise amplifier), up/down-converter, mixer, PLL, VCO, and IF stage, require low noise and high PSRR LDOs. The temperature-compensated crystal oscillator circuit requires very high PSRR at RF power amplifier burst frequency. For instance, minimum 65dB PSRR at 217Hz is recommended for the GSM handsets.

The WL9193, with PSRR of 75dB at 1KHz, is suitable for most of these applications that require high PSRR and low noise.

Ultra Fast Start-up

After enabled, the WL9193 is able to provide full power in as little as tens of microseconds, typically 25µs. This feature will help load circuitry move in and out of standby mode in real time, eventually extend battery life for mobile phones and other portable devices.

Fast Transient Response

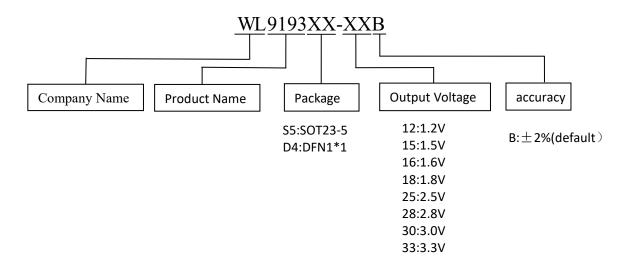
Fast transient response LDOs can also extend battery life. To meet this load requirement, the LDO must react very quickly without a large voltage drop or overshoot — a requirement that cannot be met with conventional, general-purpose LDOs.

The WL9193's fast transient response from 0 to 150mA provides stable voltage supply for fast DSP and GSM chipset with fast changing load.

Low Quiescent Current

The WL9193 consuming only around $40\mu A$ for all input range and output loading, provides great power saving in portable and low power applications.

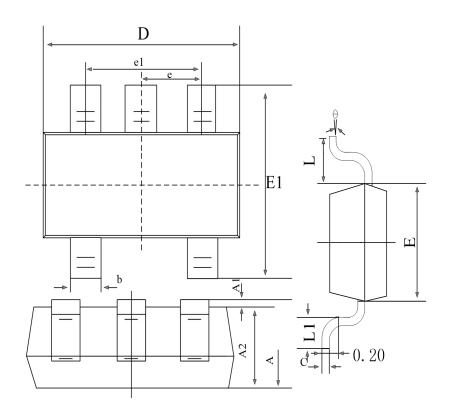
Current Limit Protection


When output current at the OUT pin is higher than current limit threshold or the OUT pin is short-circuit to GND, the current limit protection will be triggered and clamp the output current to approximately 500mA to prevent over-current and to protect the regulator from damage due to overheating.

Thermal Shutdown Protection

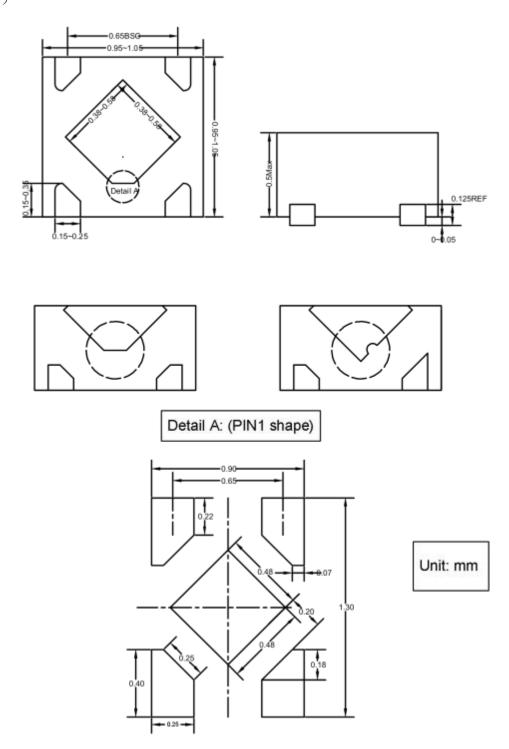
Thermal protection disables the output when the junction temperature rises to approximately +155°C, allowing the device to cool down. When the junction temperature reduces to approximately +130°C the output circuitry is enabled again. Depending on power dissipation, thermal resistance, and ambient temperature, the thermal protection circuit may cycle on and off. This cycling limits the heat dissipation of the regulator, protecting it from damage due to overheating.

Ordering And Marking Information


Please contact sales for marking.

Package Outline	1 2 3	
MPQ	SOT23-5 3000PCS/Reel	DFN1*1 10000pcs/Reel

Package Dimension


SOT23-5

REF.	Millimeter		
TCD1.	Min.	Max.	
A	1. 05	1. 25	
A1	0	0.1	
A2	1. 05	1. 15	
b	0.3	0.5	
С	0. 1	0.2	
D	2. 85	3. 05	
Е	1. 5	1.7	
. E1	2. 65	2. 95	
e	0. 95 (BSC)		
e1	1.8	2. 0	
L	0.3	0.6	
θ	0°	8°	

DFN4 (1×1)

WPMtek reserves the right to make changes to the product specification and data in this document without notice. WPMtek makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does WPMtek assume any liability arising from the application or use of any products or circuits, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Any enquiry ,please write to sales@wpmtek.com for futher information.