

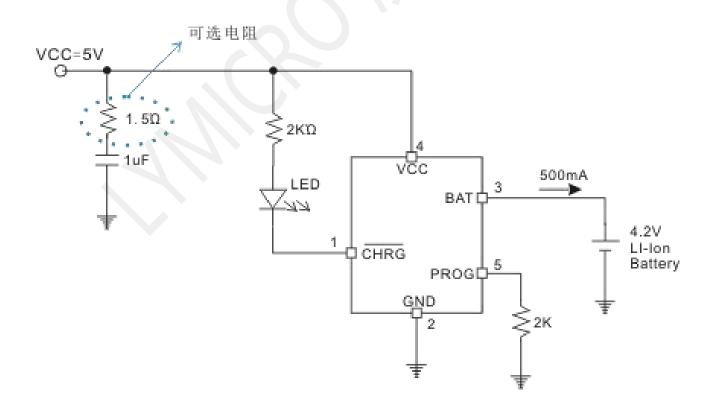
800mA 锂离子电池线性充电芯片

产品特点

- 电池反接保护
- 高达 800mA 的最大充电电流
- 预充 4.2V 充电电压
- BAT 小于 1uA 的超低自耗电
- 智能温度调节功能
- 智能再充电功能
- C/10 充电终止
- 2.8V 涓流充电阈值
- 充电指示灯控制信号
- SOT23-5L 封装

应用

- 小音响等便携式设备
- 蓝牙耳机、GPS
- 其它锂电池设备


概述

LY4054 是一款带电池反接保护的单节锂离子电池恒定电流/恒定电压线性充电芯片。使用较少的外部元件数量使得 LY4054 成为便携式应用的理想选择。LY4054 最大充电电流为 800mA。

LY4054 采用了内部 PMOSFET 架构,加上防倒充电路,所以不需要外部隔离二极管。热反馈环路设计可对充电电流进行自动调节,以便在大功率或高温环境下对芯片温度加以限制。

当输入电压被拿掉时,LY4054 自动进入一个低电流状态,典型条件下电池漏电流小于 1uA。LY4054 的其它特点包括电池温度检测、欠压闭锁、自动再充电和充电指示。

典型应用

管脚信息

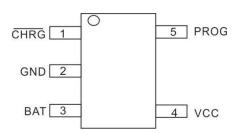


Fig3.管脚示意图

管脚号	管脚名称	功能描述	
1	CHRG	充电指示端	
2	GND	芯片电源地	
3	BAT	电池正极输入	
4	VCC	适配器 5V 输入端口	
5	PROG	充电电流设定脚	

极限参数

参数	最小值	最大值	单位
VCC	-0.3	8	V
其它引脚	-0.3	VCC+0.3	٧
储存环境温度	-55	150	$^{\circ}$
工作结温	-40	150	$^{\circ}$ C
功耗		0.5	W

注:超出极限参数范围芯片可能会损坏。

电气特性

如无特殊说明, VCC=5V, Ta=25℃

符号	参数	测试条件	最小值	典型值	最大值	单位
V_{CC}	输入电源电压		4.5	5	6.5	٧
Icc	工作电流	待机模式		55	100	uA
V _{FLOAT}	输出浮充电压	0°C≤Ta≤85°C	4.158	4.2	4.242	V
IC	恒流充电电流	R _{PROG} =2 K, V _{BAT} =3.7V	450	500	550	mA
I _{TRIKL}	涓流充电电流	V _{BAT} <v<sub>TRIKL,R_{PROG}=2K</v<sub>	40	50	60	mA
V _{TRIKL}	涓流充电阈值电压	R _{PROG} =2K,VBAT 上升	2.6	2.8	3.0	V
V _{TRHYS}	涓流充电迟滞电压	R _{PROG} =2K	100	150	200	mV
V _{UV}	Vcc欠压保护阈值电压	Vcc上升	3.55	3.75	3.95	V
V _{UVHYS}	Vcc欠压保护迟滞电压	Vcc下降	0.15	0.25	0.35	V
V _{ASD}	V _{CC} -V _{BAT} 阈值电压	Vcc上升	100	150	200	mV
		Vcc下降	5	30	50	mV
I _{TERM}	C/10 终止电流阈值	R _{PROG} =2K	40	50	60	mA
V _{PROG}	PROG 引脚电压	R _{PROG} =2K,电流模式	0.9	1.0	1.1	V
V_{CHRG}	CHRG引脚输出低电压	I _{CHRG} =5mA		0.3	0.6	٧
ΔV_{RECHRG}	再充电电池阈值电压	V _{FLOAT} -V _{RECHRG}	110	150	190	mV
T _{LIM}	限定温度模式结温			125		$^{\circ}\!\mathbb{C}$
T _{RECHRG}	再充电比较器滤波时间	VBAT下降	1	2	3	mS
T _{TERM}	结束比较器滤波时间	I _{BAT} 降至 C/10 以下	1	2	3	mS

功能说明

VCC 旁路电容

输入旁路电容如果选用多层陶瓷电容时需特别注意,由于有些陶瓷电容Q值较高,在有些条件上电时(比如将VCC连接到一个工作中的电源),会产生一个较高的瞬态电压信号,特别是在电池反接情况下输入VCC 瞬态尖峰高电压和电池电压叠加对芯片构成严重威胁,所以在需要电池反接保护功能时,必须给输入陶瓷电容串联一个1.5欧姆的电阻以最大限度减小启动电压瞬态信号(如典型应用图虚线框所示电阻);即使不需要电池反接保护,也强烈建议给VCC旁路电容串联电阻以消除输入尖峰电压。

充电电流设置

PROG脚接电阻到GND可以对充电电流进行设定。设定电阻和充电电流采用下列公式来计算:

$R_{PROG}=1000V/I_{BAT}$

根据需要的充电电流I_{BAT}来确定电阻R_{PROG}的阻值,最大充电电流可设置为800mA,在涓流充电阶段,此管脚的电压被调制在 0.1V,在恒流充电阶段,此管脚的电压被调制在1V。

充电结束

当充电电流在达到充满电压之后降至设定值的1/10 时,充电过程结束。充电结束通过一个内部滤波比较器对PROG引脚进行监控来检测,当PROG引脚电压降至100mV以下的时间超过2ms时,充电结束。

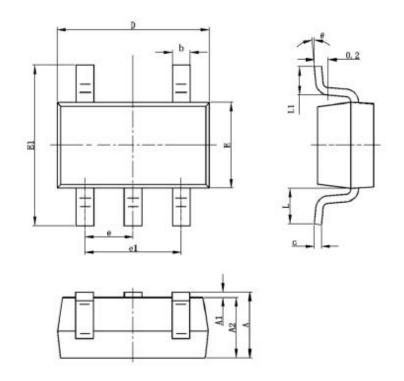
智能再充电

VCC 一直接入的情况下,LY4054 对 BAT 引脚电压进行监控,当 BAT 引脚电压低于再充电阈值电压 4.05V 时 (对应电池容量约 80%),重新对电池进行充电,这就避免了对电池进行不必要的反复充电,有效延长电池的使用寿命。

智能温度控制

LY4054内部集成了智能温度控制功能, 当芯片温度高于120℃时,会自动减小充电电流以稳定芯片的温度。

增加热调节电阻


在输入电源与 V_{CC} 之间串联一个 0.3Ω 的功率电阻或正向导通压降小于 0.5V 的二极管,以降低 V_{CC} 与 BAT 两端的压降,减小芯片的功耗,这具有增加充电电流的作用。

充电状态指示器

当充电器处于充电状态时,CHRG被拉到低电平,充电结束后,CHRG为高阻态。如果不使用状态指示功能 CHRG可悬空。

封装信息

SYMB OL	DIMENSION IN MILIMETERS		DIMENSION IN INCHES		
	MIN	MAX	MIN	MAX	
Α	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.400	0.012	0.016	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
Е	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950 TYP		0.037 TYP		
e1	1.800	2.000	0.071	0.079	
L	0.700 REF		0.028 REF		
L1	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	
				_	