LKP41202DF系列 低压差线性稳压器 产品说明书

LKP41202DF 系列 LDO 低压差线性稳压器

1 特点

- 输入电压范围: 2.3V~6.5V
- 固定输出电压: 3.3V
- 可调输出电压: ADJ(1.2V~V_{IN} V_{DO})
- 最大输出电流: 2A
- 超低噪声: 6 μ Vrms (10Hz~100kHz)
- 快速瞬态响应: 1.5 μs (1mA~1.5A 负载阶跃)
- 电源抑制比(PSRR): 60dB(100kHz)
- 低压差: 172mV (2A 负载, VOUT=3V)
- 在整个线路、负载与温度范围内的电压精度: ±2%
- 静态电流: IGND = 0.7 mA (空载)
- 低美断电流: 0.25 μA (VIN=5V)
- 可调软启动
- 工作温度: -40℃~125℃
- 封装形式: DFN8

2 应用

- 针对噪声敏感型应用的稳压: ADC 和 DAC 电路、精准放大器、PLL/VCO 和时钟 IC
- 通信和基础设施

- 医疗和保健
- 工业和仪表

3 概述

LKP41202DF 是一系列低压差线性稳压器(LDO),采用 2.3V~6.5V 电源供电,最大输出电流为 2A。该器件采用先进的专有架构,提供高电源抑制比、超低噪声特性,仅使用一个 4.7 μ F 小陶瓷输出电容,即可实现卓越的电压与负载瞬态响应性能。

LKP41202DF 可提供固定输出电压选项和可调型版本,通过软启动引脚调整启动时间,可以控制浪涌电流。使用 1 nF 软启动电容器时的典型启动时间为 1.0 ms。输出噪声为 6 µ V rms(10Hz~100kHz)。采用 8 引脚 3 mm×3 mm DFN8 封装,因此它不仅是非常紧凑的解决方案,还能为需要高达 2 A 输出电流的应用提供卓越的热性能,其外形扁平且占板面积小巧。

器件信息

型号	封装	封装尺寸
LKP41202DF-ADJ	DFN8	3.00mm×3.00mm×0.75mm
LKP41202DF-33	DFN8	3.00mm×3.00mm×0.75mm

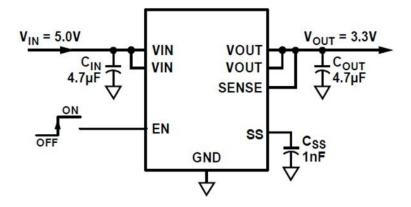
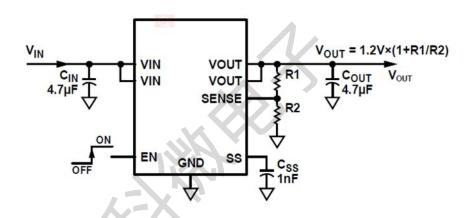



图 1 典型应用图 (LKP41202DF-33)

注:R2建议使用小于 200kΩ的电阻。

图 2 典型应用图 (LKP41202DF-ADJ)

目 录

1 特点	2
2 应用	2
3 概述	2
4 管脚排布与功能描述	2
4.1 引脚排列	2
5 电特性	2
5.1 绝对最大额定值	2
5.2 推荐工作条件	3
5.3 热性能信息	3
5.4 电特性	3
6 特性曲线	5
7 应用信息	6
7.1 功能结构	6
7.2 典型应用	6
7.3 输出负载注意事项	7
	7
7.5 计算结温	8
8 封装形式(DFN8)	9
9 机械、包装和可订购的信息	9
9.1 载带和卷盘信息	9
9.2 订货信息	11
10. 版末/台自	12

4 管脚排布与功能描述

4.1 引脚排列

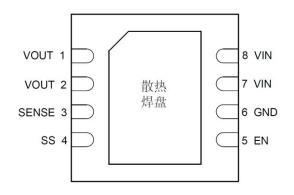


图 3 引脚排列图 (顶视图)

表 1 引脚说明

引脚 编号	引脚 名称	描述	引脚编号	引脚 名称	描述	
1	VOUT	输出电压。用 4.7 μ F 或更高的电容器连接 至 GND。	5	EN	LDO 输出使能端。高电平有效。若要实现自动启动,可将 EN 连接到 VIN	
2	VOUT	± UND.	6	GND	接地端	
3	SENSE	感测输入。此引脚尽可能接近负载连接, 以获得最佳的负载调节。	7	VIN		
4	SS	软启动端。使用 $1nF$ 接地电容器的典型启动时间为 $1ms$ 。可以通过软启动引脚调整启动时间来控制浪涌电流。请勿将该引脚直接连接到 GND $T_{SS}(ms) = 0.38ms + C_{SS}(nF) \times \frac{0.6V}{1\mu A}$	8	VIN	输入电压。用 4.7 μ F 或更高的电容器连接至 GND。	
散热焊盘		裸露的焊盘在封装的底部。增强热性能,并与封装内的 GND 电连接。将该焊盘连接到电路板上的接地平面,以确保正常工作。				

5 电特性

5.1 绝对最大额定值

参数	t	最小值	最大值	单位
VIN	VIN 引脚电压	-0.3	7	V
VOUT	VOUT 引脚电压	-0.3	$ m V_{IN}$	V
VEN	EN 引脚电压	-0.3	7	V
VSS	SS 引脚电压	-0.3	$V_{ m IN}$	V

VSENSE	SENSE 引脚电压	-0.3	7	V
TSTG	贮存温度	-65	+150	$^{\circ}$

注:

1.超过表中所列的绝对最大额定值可能会导致器件的永久损坏。长期处于绝对最大额定值的条件下可能会影响可靠性。任何时候都不建议对设备的功能操作超出推荐标准规定的条件。

5.2 推荐工作条件

参数		最小值	典型值	最大值	单位	
VIN	输入电压	2.3	-	6.5	V	
TJ	结温范围	-	150	-	°C	
TA	工作温度	-40	-	+125	°C	

5.3 热性能信息

热指标	LKP41202DF	单位
	8个引脚	
RθJA 结至环境热阻	38	°C/W
Rθ JC(top) 结至外壳(顶部)热阻	25.5	°C/W
ψJB 结至电路板特征参数	15.5	°C/W

5.4 电特性

(若无特殊说明,测试条件为 T_A = 25 $^{\circ}$ C, V_{IN} =(V_{OUT} +0.5V)或 2.3V (以较大者为准), V_{EN} = V_{IN} , I_{OUT} =10mA, C_{IN} = C_{OUT} =4.7 μ F。)

参数	符号	最小值	典型值	最大值	单位	测试条件
输入电压	$V_{\rm IN}$	2.3	-	6.5	V	-
输出电流	I _{OUT}		-	2	A	-
电源电流		7	0.7	2.0	mA	$I_{OUT} = 0\mu A$
电你电机	$I_{ m GND}$	-	4.8	8.7	IIIA	$I_{OUT} = 2A$
关断电流	I_{SD}	-	0.25	3.8	μΑ	$V_{EN} = GND$, $V_{IN} = 5V$
		-2	-	2		I _{OUT} = 10mA
固定输出电压精度	$V_{ m OUT}$	-2		2	%	$100\mu A < I_{OUT} < 2A, V_{IN} = (V_{OUT} + 0.5V) \sim$
		-2	-	2		6.5V
		1.176	1.200	1.224		$I_{OUT} = 10$ mA
可调输出电压精度	$V_{ m SENSE}$	1.176	1.200	1.224	V	$100\mu A < I_{OUT} < 2A, V_{IN} = (V_{OUT} + 0.5V) \sim$
		1.170	1.200	1.224		6.5V
电压调整率	$\Delta V_{OUT} / \Delta V_{IN}$	-0.15	-	0.15	%/V	$V_{IN}=(V_{OUT}+0.5V)\sim6.5V$
负载调整率	$\Delta V_{OUT} / \Delta I_{OUT}$	-	0.1	0.3	%/A	$I_{OUT} = 100 \mu A \sim 2A$
SENSE 端偏置电流	т		1		A	$100\mu A < I_{OUT} < 2A$, $V_{IN} = (V_{OUT} + 0.5V) \sim$
SENSE 炯炯且 电视	I _{BIAS_SENSE}	-	1	-	nA	6.5V
		-	42	70		$I_{OUT} = 500 \text{mA}$, $V_{OUT} = 3 \text{V}$
压差	V_{DO}	-	84	135	mV	$I_{OUT} = 1A$, $V_{OUT} = 3V$
		-	172	270		$I_{OUT} = 2A$, $V_{OUT} = 3V$

参数	符号	最小值	典型值	最大值	单位	测试条件
输出噪声频谱密度	OUT _{NOISE}	-	6	-	μV_{RMS}	10Hz~100kHz,V _{OUT} =1.2V
			60			$100kHz, V_{IN}=4.0V, V_{OUT}=3V,$
		1	60	-		$I_{OUT}=1.5A, C_{SS}=0nF$
			53			$100kHz, V_{IN}=3.5V, V_{OUT}=3V,$
			33	_		$I_{OUT}=1.5A, C_{SS}=0nF$
		_	42	_		$100kHz, V_{IN}=3.3V, V_{OUT}=3V,$
电源抑制比	PSRR		72	_	dB	I _{OUT} =1.5A, C _{SS} =0nF
	TORK	_	31	_	ub	$1MHz$, V_{IN} =4.0V, V_{OUT} =3V,
			31			I _{OUT} =1.5 A, C _{SS} =0nF
		_	30	_		$1MHz, V_{IN}=3.5V, V_{OUT}=3V,$
			30			I _{OUT} =1.5 A, C _{SS} =0nF
		_	20	_		$1MHz, V_{IN}=3.3V, V_{OUT}=3V,$
						I _{OUT} =1.5 A, C _{SS} =0nF
						对于 1 mA~1.5 A 的负载阶跃,输出电
瞬态负载响应	t _{tr-rec}	-	1.5	-	μs	压从 V _{DEV} 稳定在±V _{SETTLE} 范围内的时
						间,负载阶跃上升时间= 400 ns
_	$V_{ m DEV}$	-	35	_	mV	由于 1 mA~1.5 A 负载阶跃而导致的输
						出电压偏差
_	V _{SETTLE}	-	0.1		%	经过 t _{TR-REC} 之后,输出电压偏差,
	-			$A \sim$	\ /_	$V_{OUT} = 5 \text{ V}, C_{OUT} = 4.7 \mu\text{F}$
启动时间	t _{START-UP}	-	380		μs	V _{OUT} =5V, C _{SS} =0nF
	-57.16.1 01	-	1.0		ms	V _{OUT} =5V, C _{SS} =1nF
软启动电流	I _{SS}	0.5	1	1.5	μΑ	V _{IN} =5.0V
限流阈值	I _{LIMIT}	2.4	3.3	3.9	A	-
VOUT 上拉电阻	V _{OUT-PULL}	-	11	-	kΩ	$V_{EN} = GND, V_{OUT} = 1V$
热关断阈值	TS_{SD}		150	-	$^{\circ}$	结温上升
热关断迟滞	TS _{SD-HYS}	-	15	-	$^{\circ}$	-
UVLO 上升	UVLO _{RISE}		-	2.28	V	-
UVLO 下降	UVLO _{FALL}	1.94	-	-	V	-
UVLO 迟滞	UVLO _{HYS}	-	200	-	mV	-
EN 输入高电平	$V_{\mathrm{EN_H}}$	1.11	1.2	1.27	V	2.3V≤V _{IN} ≤6.5V
EN 输入低电平	$V_{\text{EN_L}}$	1.01	1.1	1.16	V	2.3V≤V _{IN} ≤6.5V
EN 输入漏电流	I _{EN_LK}	-	0.1	1.0	μA	$V_{EN} = V_{IN} \stackrel{\checkmark}{ ext{IN}} GND$

6 特性曲线

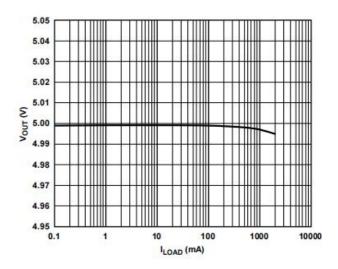


图 4 输出电压和负载电流关系曲线图

图 5 接地电流和负载电流关系曲线图

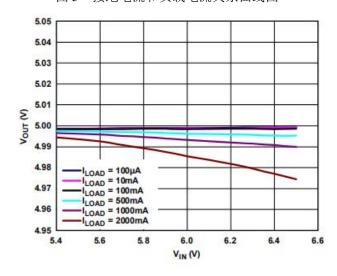


图 6 输出电压和输入电压(不同负载)关系曲线图

7 应用信息

7.1 功能结构

LKP41202DF 是一系列低压差线性稳压器(LDO),采用 2.3V~6.5V 电源供电,最大输出电流为 2A。该器件采用 先进的专有架构,提供高电源抑制比、超低噪声特性,仅使用一个 4.7 μ F 小陶瓷输出电容,即可实现卓越的电压与负 载瞬态响应性能。在正常工作条件下,LKP41202DF 使用 EN 引脚来启用和禁用 VOUT 输出:当 EN 为高电平时,VOUT 开启;当 EN 为低电平时,VOUT 关闭。若要自动启动,将 EN 连接至 VIN。功能框图如图 7。

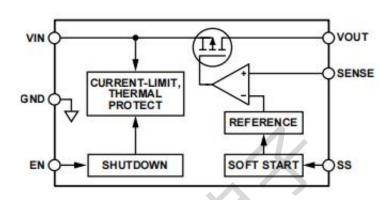


图 7 功能框图

7.2 典型应用

LKP41202DF 系列可调版本的输出电压可以设置在 $1.2V \sim V_{IN}$ – V_{DO} V,从 SENSE 引脚连接电阻 R1 到 VOUT,连接电阻 R2 到 GND。 固定版本 SENSE 引脚直接连接 VOUT。

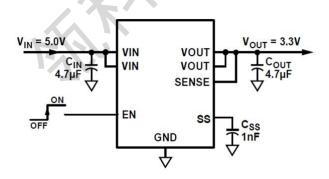
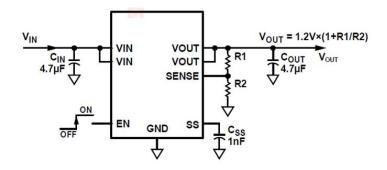



图 8 典型应用电路(3V3固定输出)

注:R2 建议使用小于 200kΩ的电阻。

图 9 典型应用电路(ADJ输出)

7.3 输出负载注意事项

PCB 布线时建议走线长度要短,输入输出电容应尽可能的靠近芯片管脚处,保证芯片底部的散热焊盘与 PCB 板的接地层连接。

7.4 输出电容和瞬态响应

输出电容的 ESR 影响稳定性,尤其是小电容。建议最小输出电容为 4.7μF, 以防止振荡。 LKP41202DF 系列是一个小功率器件,输出瞬态响应将是输出电容的函数。较大的输出电容值可以减小峰值偏差,并为较大的负载电流变化提供更好的瞬态响应。

必须特别考虑陶瓷电容器的使用。陶瓷电容器是用各种介质制造的,每种介质在温度和施加电压下都有不同的性能。最常用的 Z5U、Y5V、X5R 和 X7R。Z5U 和 Y5V 适用于小封装的应用环境中,但它们往往具有强电压和温度系数,如图 10 和 11 所示。当与 5V 稳压器一起使用时,在工作温度范围内施加的直流偏置电压的有效电容值可低至 1μF至 2μF。X5R 和 X7R 具有更稳定的特性,更适合用作输出电容。X7R 类型在温度范围内具有更好的稳定性,而 X5R 更便宜,可提供更高的值。X5R 和 X7R 指定工作温度范围和最大电容值随温度变化比 Y5V 和 Z5U 电容器好。随着元件外壳尺寸的增大,电容器的直流偏置特性趋于改善,但应验证工作电压下的预期电容。

电压和温度系数并不是问题的唯一来源。有些陶瓷电容器具有压电响应。由于机械应力,压电装置在其两端产生电压,类似于压电加速度计或麦克风的工作方式。对于陶瓷电容器,应力可以由系统中的振动或热瞬态引起。



图 10 陶瓷电容器直流偏置特性

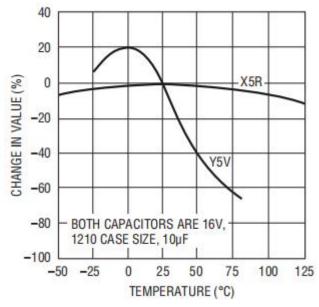


图 11 陶瓷电容器温度特性

7.5 计算结温

例:给定输出电压为 3.3V,输入电压范围为 4V 至 4.5V,输出电流范围为 0mA 至 1000mA,最大环境温度为 50℃,最大结温是多少?

器件耗散的功率将等于:

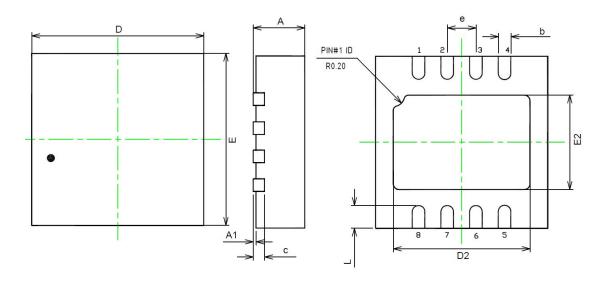
IOUT(MAX) • (VIN(MAX) – VOUT) + (IGND • VIN(MAX))

IOUT(MAX) = 1000mA

VIN(MAX) = 4.5V

IGND at (IOUT = 1000 mA, VIN = 4.5 V) = 8.7 mA

 $P = 1000 \text{mA} \cdot (4.5 \text{V} - 3.3 \text{V}) + (8.7 \text{mA} \cdot 4.5 \text{V}) = 1.239 \text{W}$

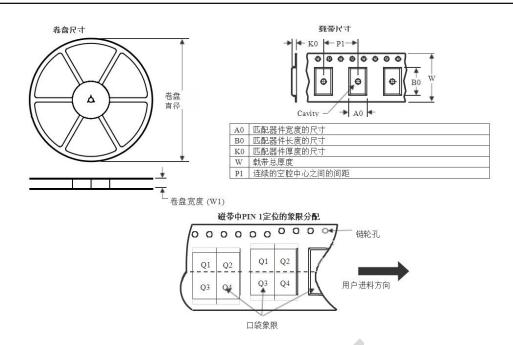

根据铜面积的不同, DFN 封装的热阻(结对环境)将在 38°C/W。近似等于:

 $1.239W \cdot 38^{\circ}C/W = 47.082C$

最高结温将等于高于环境温度的最高结温加上最高环境温度:

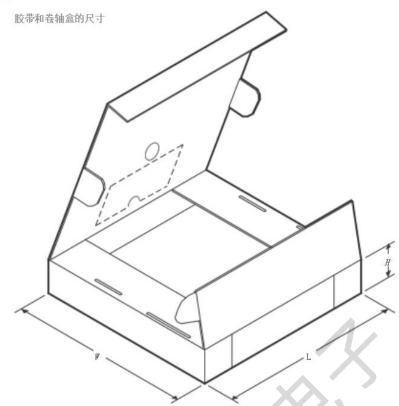
 $TJMAX = 50^{\circ}C + 47.082^{\circ}C = 97.082^{\circ}C$

8 封装形式(DFN8)



口小炊口	数值(单位: mm)							
尺寸符号 —	最小	公称	最大					
A	0.65	0.75	0.85					
A1	-	0.02	0.05					
b	0.20	0.25	0.30					
С	0.18	0.20	0.25					
D	2.80	3.00	3.20					
D2	2.18	2.38	2.58					
Е	2.70	3.00	3.20					
E2	1.45	1.65	1.85					
e		0.50BSC						
L	0.30	0.40	0.50					

9 机械、包装和可订购的信息


以下页面包括机械、包装和可订购的信息。

9.1 载带和卷盘信息

*所有尺寸均为标称尺寸

器件	封装	引脚数	卷盘直径(mm)	卷盘宽度 W1	(mm)	AO (mm)	B0 (mm)	KO (mm)	P1 (mm)	W (mm)	引脚1象限
LKP41202DF-AD	DFN8	8	330	12.4	X	3.3	3.3	1.1	8.0	12.0	Q2
J											
LKP41202DF-33	DFN8	8	330	12.4		3.3	3.3	1.1	8.0	12.0	Q2

*所有尺寸均为标称尺寸

器件	封装	引脚数	长度 (mm)	宽度(mm)	高度(mm)
LKP41202DF-AD	DFN8	8	367.0	367.0	35.0
J					
LKP41201DF-33	DFN8	8	367.0	367.0	35.0

9.2 订货信息

<u>LK</u>	<u>P</u>	<u>41202</u>	<u>DF</u>	<u>-XX</u>
<u>(1)</u>	2)	3	4	(5)

- ① 产品系列代号
- ② 分类标识
- ③ 产品代号
- ④ 封装形式
- ⑤ 输出电压

表 2 订货信息表

型号	封装	质量等级	工作温度
LKP41202DF-ADJ	DFN8	工业级	-40°C∼+125°C

LkwIC

瓴科微(上海)集成电路有限责任公司 Link Micro (Shanghai) Integrated Circuit Co., Ltd

LKP41202DF

LKP41202DF-33	DFN8	工业级	-40°C ∼+125°C
---------------	------	-----	---------------

10 版本信息

版本号	日期	版本说明	更改说明
REV 1.00	2024-07-18	更新版本	_

