

深圳市汉昇实业有限公司

SHENZHEN HANSHENG INDUSTRAIL CO.LTD.,

HS12832-4 规格书

DATASHEET

汉昇	制作	审核	批准
HS			

版本: VER 1.0	
-------------	--

深圳市汉昇实业有限公司

地址:深圳市南山区西丽镇牛成路 208 栋亿莱工业大厦 5 楼

电话: 0755-86114312/86114313/86114313

传真: 0755-86114314 网址: www.hslcm.com

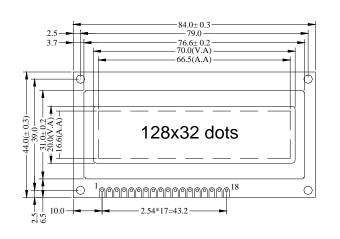
第一章 HS12832-4 中文图形液晶显示模块的主要特性

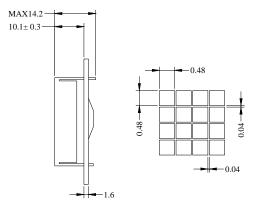
HS12832-4 中文图形液晶模块的软件特性主要由 ST7920 控制驱动器决定。ST7920 同时作为控制器和驱动器,它可提供 32 路 com 输出和 64 路 seg 输出。在驱动器 ST7921 的配合下,最多可以驱动 256×32 点阵液晶。

ST7920产品硬件特性如下:

- 提供8位,4位并行接口及串行接口可选
- 并行接口适配 M6800 时序
- 自动电源启动复位功能
- 内部自建振荡源
- 64×16 位字符显示 RAM (DDRAM 最多 16 字符×4 行, LCD 显示范围 16 ×2 行)
- 2M 位中文字型 ROM (CGROM). 总共提供 8192 个中文字型 (16×16 点阵)
- 16K 位半宽字型 ROM (HCGROM), 总共提供 126 个西文字型 (16×8 点阵)
- 64×16 位字符产生 RAM (CGRAM)
- 15×16 位总共 240 点的 ICON RAM (ICONRAM)

ST7920产品软件特性如下:


- 文字与图形混合显示功能
- 画面清除功能
- 光标归位功能
- 显示开/关功能
- 光标显示/隐藏功能
- 显示字体闪烁功能
- 光标移位功能功能
- 显示移位功能
- 垂直画面旋转功能
- 反白显示功能
- 休眠模式


中文字库选择:

ST7920-0A 内建 BIG-5 码繁体中文字型库 ST7920-0B 内建 GB 码简体中文字型库 用户在选用之前务必注明。

第二章 模块的硬件说明

1. HS12832-4 产品外形图

项	目	标 准 尺 寸	单 位
模块	体 积	$84.0 \times 44.0 \times 14.2$	mm
定位。	尺寸	79.0×39.0	mm
视	域	70. $0 \times 20. 0$	mm
字符。	点 阵	128×32	位
点 跗	豆 离	0.52×0.52	mm
点	こ小	0.48×0.48	mm

2. 电气特性: (测试条件 Ta=25,Vdd=5.0±10%)

1) 输入高电平 (Vih): 0.7Vdd~Vdd

2) 输入低电平(Vi1): 0.6Vmax

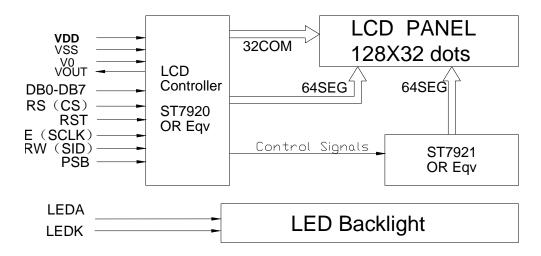
3)输出高电平(Voh): 0.8Vdd~Vdd

4) 输出低电平(Vol): 0.4Vmax

5) 模块工作电流: 1.14~1.18mA (不含背光)

6)侧白光工作电流: 30mA

3. HS12832-4 接口表:


	名称	型	电	功能描述	
	石孙	态	平	并口	串口
1	GND	I	-	模块电源输入(未注明为5V)	
2	VCC	I	-	电源地	
3	V0	I	-	对比度调节端	
4	RS (CS)	I	H/L	寄存器选择端: H 数据; L 指令	片选, 高有效
5	R/W (SID)	I	H/L	读/写选择端: H读; L写	串行数据线
6	E (SCK)	I	H/L	使能信号	串行时钟输入
7	DB0				
8	DB1	I/O	H/L	数据总线低四位	空接
9	DB2	1/0	Π/L	致据忘线似 自位	工任 日
10	DB3				
11	DB4				
12	DB5	I/O	H/L	数据总线高四位,4位并口时空接	空接
13	DB6	1/0	n/L	数据忘线同口证, 4位开口的至接	工任
14	DB7				
15	PSB	I	H/L	并口/串口选择: H 并口; L 串口*	**
16	/RST	I	H/L	复位信号, 低有效	
17	LEDA	I	-	背光正	
18	LEDK	I	-	背光负	

4. PSB 电路

PSB 接高时选择并口,接低时选择串口。模块上通过 J, J0 来选择串并口,当用户通过 OR 电阻连接 J 时,此时为并口模式,连接 J0 时,为串口模式

5. 原理简图

HS12832-4 原理简图

第三章 内置硬件说明

1. 中文字型产生 ROM (CGROM) 及半宽字型 ROM (HCGROM)

ST7920 的字型产生 ROM 通过 8192 个 16×16 点阵的中文字型,以及 126 个 16×8 点阵的西文字符,它用 2 个字节来提供编码选择,将要显示的字符的编码 写到 DDRAM 上,硬件将依照编码自动从 CGROM 中选择将要显示的字型显示再屏幕上。

2. 字型产生 RAM (CGRAM)

ST7920 的字型产生 RAM 提供用户自定义字符生成(造字)功能,可提供 4组 16×16点阵的空间,用户可以将 CGROM 中没有的字符定义到 CGRAM 中。

3. 显示 RAM(DDRAM)

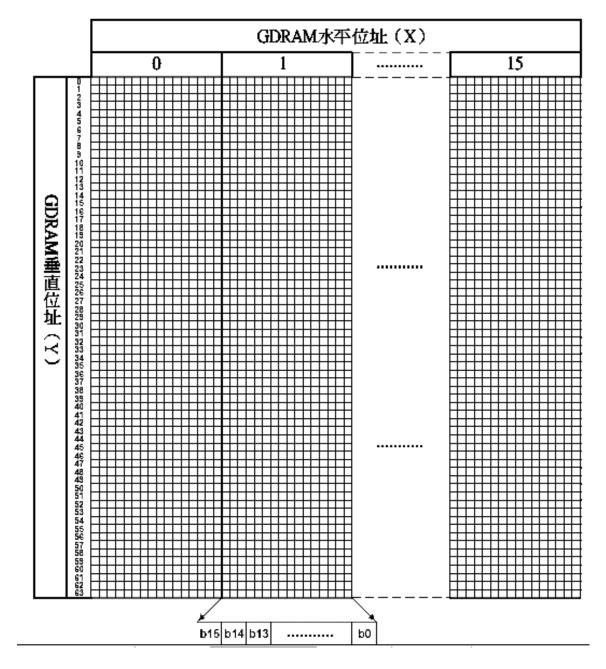
显示 RAM 提供 64×2 字节的空间,最多可以控制 4 行 16 字的中文字型显示。 当写入显示资料 RAM 时,可以分别显示 CGROM,HCGROM 及 CGRAM 的字型。

三种字型的选择:

- 1) 显示半宽字型 将一个字节的编码写入 DDRAM 中,范围是 02~7FH
- 2) 显示 CGRAM 字型 将 2 个字节的编码写入 DDRAM 中, 共有 0000H, 0002H, 0004H 及 0006H 四种编码
- 3) 显示中文字型 将 2 字节的编码写入 DDRAM 中, 先写高 8 位, 后写低 8

位范围是 A140H~D75FH(BIG5), A1A0H~F7FFH(GB)

4. ICON RAM(IRAM)

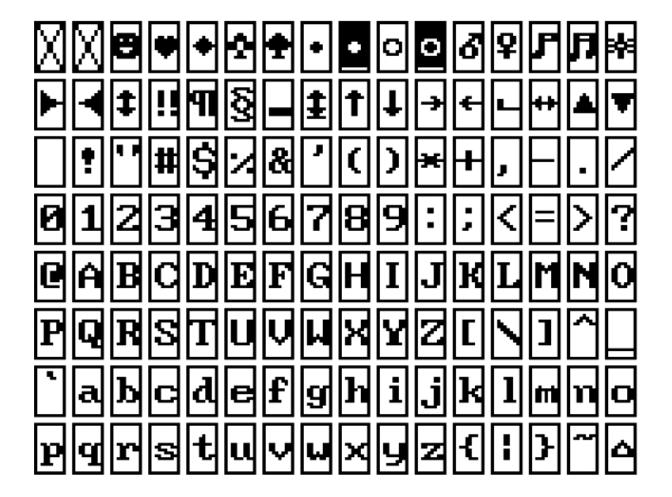

ST7920 提供 240 点的 ICON 显示,它由 15 个 IRAM 单元组成,每个单元有

		AM 位								ICO	ON R	AM j	料						
		集將 S																	
爲"0",	再利用	設定 IR	AM 位				高位	元組						,	低位元	組			
址指令	來設定	E AC3	AC0																
AC3	AC2	AC1	AC0	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	SEG0	SEG1	SEG2	SEG3	SEG4	SEG5	SEG6	SEG7	SEG8	SEG9	SEG10	SEG11	SEG12	SEG13	SEG14	SEG15
0	0	0	1	SEG16	SEG17	SEG18	SEG19	SEG20	SEG21	SEG22	SEG23	SEG24	SEG25	SEG26	SEG27	SEG28	SEG29	SEG30	SEG31
0	0	1	0	SEG32	SEG33	SEG34	SEG35	SEG36	SEG37	SEG38	SEG39	SEG40	SEG41	SEG42	SEG43	SEG44	SEG45	SEG46	SEG47
0	0	1	1	SEG48	SEG49	SEG50	SEG51	SEG52	SEG53	SEG54	SEG55	SEG56	SEG57	SEG58	SEG59	SEG60	SEG61	SEG62	SEG63
0	1	0	0	SEG64	SEG65	SEG66	SEG67	SEG68	SEG69	SEG70	SEG71	SEG72	SEG73	SEG74	SEG75	SEG76	SEG77	SEG78	SEG79
0	1	0	1	SEG80	SEG81	SEG82	SEG83	SEG84	SEG85	SEG86	SEG87	SEG88	SEG89	SEG90	SEG91	SEG92	SEG93	SEG94	SEG95
0	1	1	0	SEG96	SEG97	SEG98	SEG99	SEG100	SEG101	SEG102	SEG103	SEG104	SEG105	SEG106	SEG107	SEG108	SEG109	SEG110	SEG111
0	1	1	1	SEG112	SEG113	SEG114	SEG115	SEG116	SEG117	SEG118	SEG119	SEG120	SEG121	SEG122	SEG123	SEG124	SEG125	SEG126	SEG127
1	0	0	0	SEG128	SEG129	SEG130	SEG131	SEG132	SEG133	SEG134	SEG135	SEG136	SEG137	SEG138	SEG139	SEG140	SEG141	SEG142	SEG143
1	0	0	1	SEG144	SEG145	SEG146	SEG147	SEG148	SEG149	SEG150	SEG151	SEG152	SEG153	SEG154	SEG155	SEG156	SEG157	SEG158	SEG159
1	0	1	0	SEG160	SEG161	SEG162	SEG163	SEG164	SEG165	SEG166	SEG167	SEG168	SEG169	SEG170	SEG171	SEG172	SEG173	SEG174	SEG175
1	0	1	1	SEG176	SEG177	SEG178	SEG179	SEG180	SEG181	SEG182	SEG183	SEG184	SEG185	SEG186	SEG187	SEG188	SEG189	SEG190	SEG191
1	1	0	0	SEG192	SEG193	SEG194	SEG195	SEG196	SEG197	SEG198	SEG199	SEG200	SEG201	SEG202	SEG203	SEG204	SEG205	SEG206	SEG207
1	1	0	1	SEG208	SEG209	SEG210	SEG211	SEG212	SEG213	SEG214	SEG215	SEG216	SEG217	SEG218	SEG219	SEG220	SEG221	SEG222	SEG223
1	1	1	0	SEG224	SEG225	SEG226	SEG227	SEG228	SEG229	SEG230	SEG231	SEG232	SEG233	SEG234	SEG235	SEG236	SEG237	SEG238	SEG239
1	1	1	1			-													

16 位,每写入一组 IRAM 时,需先写入 IRAM 地址,然后连续送入 2 个字节的数据,先高 8 位(D15 \sim D8),后低 8 位(D7 \sim DD)。

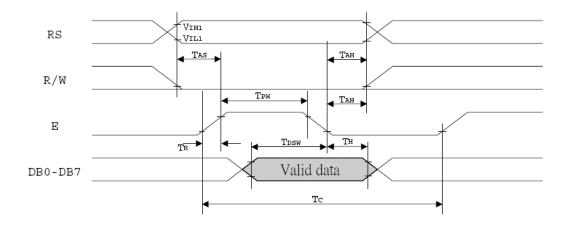
5. 绘图 RAM

提供 64×32 个字节的空间(由扩充指令设定绘图 RAM 地址),最多可以控制 256×64 点阵的二维绘图缓冲空间,在更改绘图 RAM 是,由扩充指令设置 GDRAM 地址先垂直地址后水平地址(连续 2 个字节的数据来定义垂直和水平地址),再 2 个字节的数据给绘图 RAM (先高 8 位后低 8 位)。

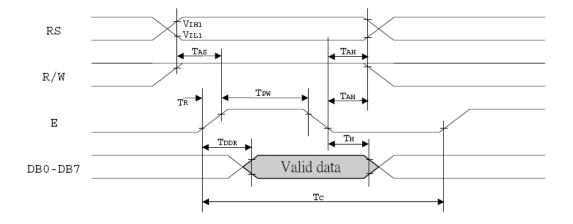

6. DDRAM 内容,CGRAM 地址以及 CGRAM 内容的对照关系

DDRAM (字元作	-				C	GI 位			[C			A.I		-	F#	4	C		R If				(* h	‡
(4-76)	B	100.00		В	ВЕ	B B	_		В	Т	Th	n D	EV.	<u>/ 10</u>	TA.	M D	В	TV	$\overline{\mathbb{D}}$	D	TA	z D		D	D
B15~ B4	3	_	_	0	5 4		2	1	0	$\frac{D}{1}$	$\frac{1}{1}$	$\frac{1}{1}$	$\frac{D}{1}$	$\frac{1}{1}$	$\frac{r}{1}$	9	8	$\frac{\omega}{7}$	<u>ل</u> 6	_	17 4	2 3	$\frac{\nu}{2}$		0
101.0∼ 104	Γ.	-	ľ		717		_	-	U	5	4	1 (5)	2		0	7	9		100		_	7	-21	1	
						0	0	0	0	0	0	10	0		$\frac{v}{1}$	0	0	n	1	1	0	0	0	0	0
						0	0	0	1	$\frac{v}{1}$	$\frac{\tilde{v}}{1}$	7	$\frac{v}{1}$	$\frac{v}{1}$	1	$\frac{\tilde{v}}{1}$	0	0	1	0	0	2 0	0	0	0
						0	0	$\frac{v}{1}$	0	0	0		1		0	0	0		1	0	0	0	$\frac{\circ}{1}$	0	0
						0	0	1	$\frac{v}{1}$	0	0		$\frac{1}{1}$	0	0	0	0	_	1	$\frac{\vee}{1}$	$\frac{v}{1}$	Ť	1	$\frac{1}{1}$	0
						0	1	0	0	0	0	$\frac{v}{1}$	0	0	$\frac{v}{1}$	0	0	$\frac{\vee}{1}$	0	0	0		$\frac{1}{1}$	0	0
						+	F	_		_	_					_	_	_	Ë	_		_	_	-	-
						0	1	0	1	0	0	1	1	1	1	0 6	0	1	0	0 6	0	o .	1	0	0
						0	1	1	0	0	1	1	0		1	0	1	0	1	0 6	0 6	1	0	0	0
0	X	0	0	X	00	0	1	1	1	1	0.6	1	0	0 0	1	1	0.0		1	0	0	1	0	0	0
						1	0	0	0	0	0	1	0	0	1	0	0		1		1	0	0	0	0
						1	0	0	1	0	0	1	0	0	Ŧ	0	0	0	0	0	1	0	0	0	0
						1	0	1	0	0	0	1	0		1	0	0	0	0	-	0	0	0	0	0
						1	0	1	1	0	0	1	1		1	0	0	0	0		0	0	0	0	0
						1	1	0	0	0	0	1	0	0	1	0	0	_	1	0	0	0	0	0	0
						1	1	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
						1	1	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
						1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	\circ	0	0	0
						0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	1	1	0
						0	0	0	1	0	0	0	1	1	0	1	0	0	0	0	0	0	1	0	0
						0	0	1	0	0	0	1	0	0	0	0	1	0	0	1	1	0	1	0	0
						0	0	1	1	0	1	0	1	1	1	0	1	1	0	1	0	0	1	0	0
						0	1	O	0	1	0	\odot	0	0	0	0	0	1	0	1	0	0	1	0	0
						0	1	0	1	0	1	1	1	1	1	1	1	0	0	1	0	0	1	0	0
						0	1	1	0	0	1	\odot	0	\circ	0	0	1	0	0	1	0	\circ	1	0	0
0	X)1	X	01	0	1	1	1	0	1	1	1	1	1	1	1	0	0	1	0	0	1	0	0
"		N.	r II		67.1	1	0	0	0	0	1	0	0	0	0	0	1	0	0	1	0	0	1	0	0
						1	0	0	1	0	1	1	1	1	1	1	1	0	0	1	0	0	1	0	0
						1	0	1	0	0	1	0	0	0	0	0	0	0	0	1	0	0	1	0	0
						1	0	1	1	0	1	1	1	1	1	1	1	1	0		0	0	1	0	0
						1	1	0	0	1	0	1	0	0	0	0	0	1	0	1	0	0	1	0	0
						1	1	0	1	1	0	1	1	1	1	1	1	1	0	0	1	1	1	0	0
						1	1	1	0	1	0	1	0	0	0	0	0	1	0	0	0	1	0	0	0
						1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

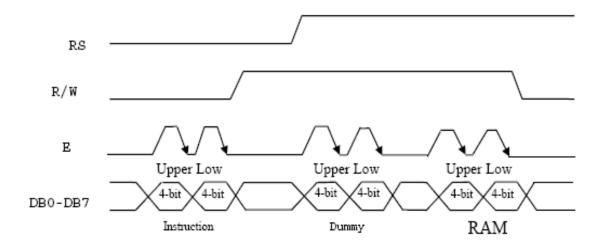
7. CGRAM 与中文字型的编码只能出现在 adress counter 的起始位置 (见下表)

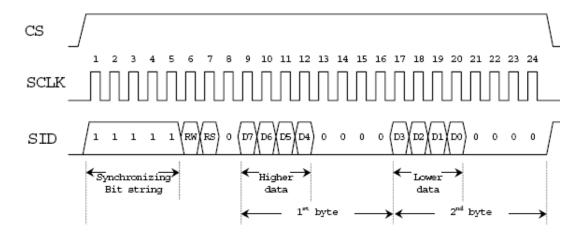

8	80	8	1	8	2	8	3	8	4	8	5	8	6	8	7	8	8	8	9	8	A	8	В	8	С
Н	L	Н	L	Н	L	Н	L	Н	L	Н	L	Н	L	Н	L	Н	L	Н	L	Н	L	Н	L	Н	L
0	N		Н	S	1	2	3	3	2	-	9														
ž	又	Ŧ	+	Ä	友	Ē	目	•••	•••	A	В	1	2	F	þ	Ż	Ţ		(Ī	E	矴	角)	
ž	又	Ŧ	+	Ä	友	E	目	•••	A	В	1	2	Ц	Þ	Ż	ζ		(钉	出目	ij	是)		

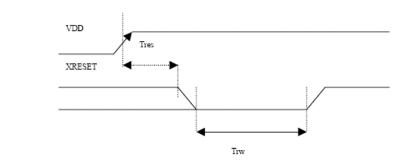
8. 16×8 半宽字型表



第四章 时序


1. 8位并口写操作时序图


2. 8位并口读操作时序图


3. 4位并口时序图图

4. 串口时序图

5. 外部复位时序图

XRESET pulse width	Trw	10us
RESET start time	Tres	50 n s

第五章 指令说明

1. 指令表 1 (RE=0, 基本指令集)

指令名称	控制	制信号			控	制	代	码			执行
1月 マ 石 小	RS	R/W	D7	D6	D5	D4	D3	D2	D1	D0	时间
清除显示	0	0	0	0	0	0	0	0	0	1	1.6 ms
地址归 0	0	0	0	0	0	0	0	0	1	X	72us
进入设定点	0	0	0	0	0	0	0	1	I/D	S	72us
显示开关设置	0	0	0	0	0	0	1	D	С	В	72us
移位控制	0	0	0	0	0	1	S/C	R/L	X	X	72us
功能设定	0	0	0	0	1	DL	X	0/RE	X	X	72us
设定 CGRAM 地址	0	0	0	1	A5	A4	A3	A2	A1	AO	72us
设定 DDRAM 地址	0	0	1	0	A5	A4	A3	A2	A1	AO	72us

读忙标志和地址	0	1	BF	A6	A5	A4	A3	A2	A1	AO	72us
写显示数据	1	0				显示	数据				72us
读显示数据	1	1	显示数据						72us		

2. 指令表 2 (RE=1, 扩充指令集)

指令名称	控制	信号				控制	代码				执行
1日 マ 石 小	RS	R/W	D7	D6	D5	D4	D3	D2	D1	DO	时间
待命模式	0	0	0	0	0	0	0	0	0	1	72us
卷动地址或 RAM 地址选择	0	0	0	0	0	0	0	0	1	SR	72us
反白显示	0	0	0	0	0	0	0	1	R1	RO	72us
睡眠模式	0	0	0	0	0	0	1	SL	X	X	72us
扩充功能设定	0	0	0	0	1	DL	X	1/RE	G	0	72us
设定 IRAM 地址或 卷动地址	0	0	0	1	A5	A4	A3	A2	A1	AO	72us
设定绘图 RAM 地址	0	0	1	0	0	0	A3	A2	A1	AO	72us
以足纭囟 RAM 地址	U	U	1	A6	A5	A4	A3	A2	A1	AO	1205

备注: 当 ST7920 在接受指令前, MCU 必须先确认 ST7920 处于非忙状态。即读取 BF=0, 才能接受新的指令;如果在送出一条指令前不检查 BF 状态,则需要延时一段时间,以确保上一条指令执行完毕.具体指令执行时间参照指令表。

"RE"是基本指令集与扩充指令集的选择控制位,当变更 "RE"的状态后,以后的指令维持在最后的状态。除非再次变更 "RE"的状态,否则使用相同的指令集时,不需要重新设置 "RE"。

3. 基本指令详细说明表

1)清除显示(CLEAR)

枚 式	0	Λ	Λ	Λ	Λ	0	Λ	1
	U	U		U	U	U	U	1

将 DDRAM 填满 "20H"(空格)代码,并且设定 DDRAM 的地址计数器(AC)为 00H; 更新设置进入设定点将 I/D 设为 1,游标右移 AC 加 1。

2) 地址归 0 (HOME)

格式	0	0	0	0	0	0	1	X
70 1	U	U	U	U	U	U	1	/ \

设定 DDRAM 的地址寄存器为 00H, 并且将游标移到开头原点位置; 这个指令并不改变 DDRAM 的内容。

3) 进入设定点(ENTRY MODE SET) 初始值: 06H 格式 0 0 0 0 1 I/D S

指定在显示数据的读取与写入时,设定游标的移动方向及指定显示的移位

I/D=1,游标右移,DDRAM地址计数器(AC)加1

I/D=0,游标左移,DDRAM 地址计数器(AC)减1

S:显示画面整体位移

S	I/D	功能描述
Н	Н	画面整体左移
Н	L	画面整体右移

4)显示开关设置(DISPLAY STATUS) 初始值:08H

格式 0 0 0 0 1 D C B

控制整体显示开关,游标开关,游标位置显示反白开关

D=1,整体显示开; D=0,整体显示关,但是不改变 DDRAM 内容

C=1, 游标显示开; C=0, 游标显示关

B=1,游标位置显示反白开,将游标所在地址上的内容反白显示;B=0,正常显示

5)游标或显示移位控制(CURSOR AND DISPLAY SHIFT CONTORL)

初始值: 0001 XXXX B (X=0,1)

格式 0 0 0 1 S/C R/L X X

这条指令不改变 DDRAM 的内容

S/C	R/L	方向	AC 的值
L	L	游标向左移动	AC=AC-1
L	Н	游标向右移动	AC=AC+1
Н	L	显示向左移动,游标跟着移动	AC=AC
Н	Н	显示向右移动,游标跟着移动	AC=AC

6) 功能设定(FUNCTION SET) 初始值: 0011 X0XX B (X=0,1)

格式 0 0 1 DL X 0/RE X X

DL:8/4 位接口控制位

DL=1,8 位 MPU 接口; DL=0,4 位 MPU 接口

RE: 指令集选择控制位

RE=1, 扩充指令集; RE=0, 基本指令集

同一指令的动作不能同时改变 DL 和 RE, 需先改变 DL 再改变 RE 才能确保设置正确

7) 设定 CGRAM 地址

格式 0 1 A5 A4 A3 A2 A1 A0

设定 CGRAM 地址到地址计数器 (AC), AC 范围为 00H~3FH 需确认扩充指令中 SR=0 (卷动位置或 RAM 地址选择)

8) 设定 DDRAM 地址

格式 1 0 A5 A4 A3 A2 A1 A0

设定 DDRAM 地址到地址计数器 (AC)

第一行 AC 范围 80H~8FH

第二行 AC 范围 90H~9FH

备注: ST7920 控制器的 128×64 点阵液晶其实原理上等同 256×32 点阵, 第三行对应的 DDRAM 地址紧接第一行; 第四行对应的 DDRAM 地址紧接第二行。

9) 读取忙标志和地址(RS=0,R/W=1)

格式 BF A6 A5 A4 A3 A2 A1 A0

读取忙标志以确定内部动作是否完成,同时可以读出地址计数器(AC)的值

10) 写显示数据到 RAM(RS=1,R/W=0)

格式 D7 D6 D5 D4 D3 D2 D1 D0

当显示数据写入后会使 AC 改变,每个 RAM (CGRAM, DDRAM, IRAM) 地址都可以连续写入 2 个字节的显示数据,当写入第二个字节时,地址计数器 (AC) 的值自动加一。

11) 读取显示 RAM 数据(RS=1, R/W=1)

格式 D7 D6 D5 D4 D3 D2 D1 D0

读取后会使 AC 改变

设定 RAM(CGRAM,DDRAM,IRAM)地址后,先要 Dummy read 一次后才能读取到正确的显示数据,第二次读取不需要 Dummy read,除非重新设置了 RAM 地址

4. 扩充指令详细说明表

1) 待命模式

格式 0 0 0 0 0 0 1

进入待命模式,执行如何其它指令都可以结束待命模式,该指令不能改变 RAM 的内容。

2) 卷动位置或者 RAM 地址选择 初始值: 02H

格式 0 0 0 0 0 1 SR

当 SR=1 时,允许输入垂直卷动地址

当 SR=0 时,允许输入 IRAM 地址(扩充指令)及允许设定 CGRAM 地址(基本指令)

3) 反白显示

初始值: 04H

格式 0 0 0 0 0 1 0 RO

选择 2 行中的任意一行作反白显示,并可决定反白与否。R0 初始值为 0,第一次执行时为反白显示,再次执行时为正常显示

通过 RO 选择要作反白处理的行:

R0=0 第一行, R0=1 第二行

说明:参考基本指令详细说明中的 DDRAM 地址说明

4) 睡眠模式

初始值: 0000 10XXB(X=0,1)

格式 0 0 0 0 1 SL 0 0

SL=1, 脱离睡眠模式

SL=0, 进入睡眠模式

5) 扩充功能设定

初始值: 001 DL X100 B (DL=1,8BIT 并口;DL=0,4BIT 并口 X=0,1) 格式 0 0 1 DL X RE G X

DL: 8/4 位接口控制位

DL=1,8 位 MPU 接口; DL=0,4 位 MPU 接口

RE: 指令集选择控制位

RE=1, 扩充指令集; RE=0, 基本指令集

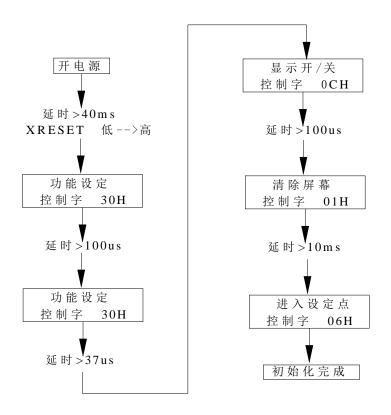
G: 绘图显示控制位

G=1, 绘图显示开; G=0, 绘图显示关

同一指令的动作不能同时改变 RE 及 DL、G,需先改变 DL 或 G 再改变 RE 才能确保设置正确

6) 设定 IRAM 地址或卷动地址

格式 0 1 A5 A4 A3 A2 A1 A0 SR=1, A5~A0 为垂直卷动地址; SR=0, A3~A0 为 IRAM 地址


7) 设定绘图 RAM 地址

4- 44	1	0	0	0	A3	A2	A1	A0
格式		A6	A5	A4	A3	A2	A1	A0

设定 GDRAM 地址到地址计数器 (AC), 先设置垂直位置再设置水平位置 (连续写入 2 字节数据来完成垂直与水平坐标的设置)。

垂直地址范围: AC6~AC0 水平地址范围: AC3~AC0

5. 初始化流程

第六章 屏幕与 DDRAM 地址的对应关系

	第1字	第2字	••••	第7字	第8字
第一行	80H	81H	• • • • •	86H	87H
第二行	90H	91H	••••	96H	97H

第七章 MCU接口方式

1. 4位并口模式

请参照8位并口间接访问方式以及4位并口时序图。不同之处只是将每个字节分两次送入,第一次送入高四位,第二次送入低四位。

2. 串口程序

PSB 接低时,串口模式被选择。在该模式下,只用两根线(SID 与 SCLK)来完

成数据传输。当同时使用多颗 ST7920 时, CS 线被配合使用, CS 是高有效。

ST7920 的他不时钟 SCLK 有独立的操作时序,当多个连续的指令需要被送入时,指令执行时间需要被考虑。必须等待上一个指令执行完毕才送入下一个指令,因为 ST7920 内部没有传送/接收缓冲区。

一个完整的串行传输周期由一下部分组成:

首先送入启动字节,送入 5 个连续的"1"用来启动一个周期,此时传输计数被重置,并且串行传输被同步。紧接的两个位指定传输方向(RW,确定读还是写)和传输性质(RS,确定是命令寄存器还是数据寄存器),最后的第八位是一个"0"。

送完启动字节之后,可以送入指令或是显示数据(或是字型代码)。指令或者代码是以字节为单位的,每个字节的内容(指令或数据)在被送入时分为两个字节来处理:高四位放在第一个字节的高四位,低四位放在第二个字节的高四位。无关位都补"0"。请参照第四章串行通讯时序图。