

ZHCSLX6B - JUNE 2021 - REVISED JULY 2024 TMAG5273 具有 I²C 接口的低功耗线性 3D 霍尔效应传感器

1 特性

- 可配置的电源模式,包括:
 - 2.3mA 活动模式电流
 - 1µA 唤醒和睡眠模式电流
 - 5nA 睡眠模式电流
- X、Y或Z轴上的线性磁场范围可选:
 - TMAG5273x1: ±40mT、±80mT
 - TMAG5273x2: ±133mT \ ±266mT
- 来自用户定义的磁性和温度阈值交叉的中断信号
- 灵敏度漂移为 5%(典型值)
- 具有增益和偏轴调节的集成角 CORDIC 计算
- 20kSPS 单轴转换率
- 高达 32 倍的可配置取平均,支持降噪
- 由 I²C 或专用 INT 引脚触发转换
- 具有循环冗余校验 (CRC) 功能的优化 I²C 接口:
 - 最大 1MHz I²C 时钟速度
 - 专用 I²C 帧读取以提高吞吐量
 - 出厂编程和用户可配置的 I²C 地址
- 多种磁体类型的集成温度补偿
- 内置温度传感器
- 1.7V 至 3.6V 电源电压 V_{CC} 范围
- 工作温度范围: -40°C 至 +125°C

2 应用

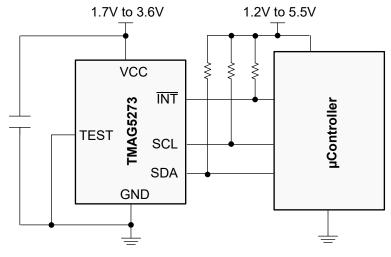
- 电表
- 电子智能锁
- 智能恒温器
- 游戏手柄和游戏控制器
- 无人机有效载荷控制
- 门窗传感器
- 磁接近传感器
- 移动机器人电机控制
- 电动自行车

3 说明

TMAG5273 是一款低功耗线性 3D 霍尔效应传感器, 适用于各种工业和个人电子产品应用。此器件在 X、Y 和 Z 轴集成三个独立的霍尔效应传感器。精密模拟信 号链和集成的 12 位 ADC 对测量的模拟磁场值进行数 字化。支持多个工作 V_{CC} 范围时, I²C 接口可确保使用 低电压微控制器实现无缝的数据通信。该器件集成了温 度传感器,可用于多种系统功能,例如给定磁场的热预 算检查或温度补偿计算。

可以通过 I2C 接口来配置 TMAG5273,以实现磁轴和 温度测量的任意组合。此外,该器件可以配置为各种电 源选项(包括唤醒和睡眠模式),从而支持设计人员根 据其系统级需求优化系统功耗。多个传感器转换方案和 I²C 读取帧有助于优化吞吐量和准确性。专用的 INT 引 脚可以在低功耗唤醒和睡眠模式期间充当系统中断,也 可以被微控制器用来触发新的传感器转换。

集成角度计算引擎 (CORDIC) 为同轴和离轴角度测量 拓扑提供完整的 360° 角度位置信息。使用用户选择的 两个磁轴执行角度计算。该器件具有磁增益和偏轴校正 功能,可减轻系统机械误差源的影响。


TMAG5273 具有四个不同的出厂编程 I²C 地址。通过修改用户可配置的 I²C 地址寄存器,该器件还支持其他 I²C 地址。每个可订购器件可配置为选择在系统校准期间适合磁体强度和元件放置的两个磁场范围之一。

该器件在 -40°C 至 +125°C 的宽环境温度范围内能够保持稳定一致的优异性能。

封装信息(1)

器件型号	封装	封装大小 ⁽²⁾	
TMAG5273	DBV (SOT-23 , 6)	2.9mm × 2.8mm	

- (1) 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。
- 封装尺寸(长×宽)为标称值,并包括引脚(如适用)。

应用方框图

Product Folder Links: TMAG5273

提交文档反馈

Copyright © 2025 Texas Instruments Incorporated

内容

1 特性	. 1	6.3 特性说明	13
2 应用		6.4 器件功能模式	
3 说明	. 1	6.5 编程	20
4 引脚配置和功能		7 应用和实施	
5 规格		7.1 应用信息	
5.1 绝对最大额定值		7.2 典型应用	
5.2 ESD 等级		7.3 最佳设计实践	
5.3 建议运行条件		7.4 电源相关建议	39
5.4 热性能信息	6	7.5 布局	40
5.5 电气特性	6	8 寄存器映射	<mark>4</mark> 1
5.6 温度传感器	7	8.1 TMAG5273 寄存器	
5.7 A1、B1、C1、D1 的磁特性	8	9 器件和文档支持	52
5.8 A2、B2、C2、D2 的磁特性	9	9.1 文档支持	52
5.9 磁温度补偿特性	9	9.2 接收文档更新通知	52
5.10 I2C 接口时序	10	9.3 支持资源	52
5.11 上电和转换时间	10	9.4 商标	52
5.12 典型特性		9.5 静电放电警告	52
6 详细说明	12	9.6 术语表	52
6.1 概述	12	10 修订历史记录	52
6.2 功能方框图	12	11 机械、封装和可订购信息	53

Product Folder Links: TMAG5273

4 引脚配置和功能

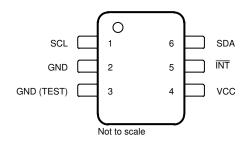


图 4-1. DBV 封装, 6 引脚 SOT-23 (顶视图)

表 4-1. 引脚功能

引	脚	类型	说明
名称	编号	久 玺	₩.₩
SCL	1	Ю	串行时钟。
GND	2	接地	参考接地。
GND (测试)	3	输入	TI 测试引脚。连接到应用中的接地端。
VCC	4	电源	电源。
INT	5	Ю	中断输入/输出。如果未使用并接地,则设置 MASK_INTB = 1b。
SDA	6	Ю	串行数据。

5 规格

5.1 绝对最大额定值

在自然通风条件下的工作温度范围内测得(除非另有说明)(1)

		最小值	最大值	单位
V _{CC}	主电源电压	-0.3	4	V
I _{OUT}	输出电流,SDA, INT	0	10	mA
V _{OUT}	输出电压,SDA, INT	-0.3	7	V
V _{IN}	输入电压,SCL,SDA, INT	-0.3	7	V
B _{MAX}	磁通量密度		无限	Т
TJ	结温	-40	150	°C
T _{stg}	贮存温度	-65	170	°C

⁽¹⁾ 超出绝对最大额定值运行可能会对器件造成永久损坏。绝对最大额定值并不表示器件在这些条件下或在建议运行条件以外的任何其他条 件下能够正常运行。如果超出"建议运行条件"但在"绝对最大额定值"范围内使用,器件可能不会完全正常运行,这可能影响器件的 可靠性、功能和性能并缩短器件寿命。

5.2 ESD 等级

			值	单位
	人体放电模型 (HBM),符合 ANSI/ESDA/JEDEC JS-001 标准,所有引脚 ⁽¹⁾	±2000	\ \	
V _(ESD)		充电器件模型 (CDM),符合 JEDEC 规范 JS-002,所有引脚 ⁽²⁾	±500	V

(1) JEDEC 文档 JEP155 指出:500V HBM 时能够在标准 ESD 控制流程下安全生产。

JEDEC 文档 JEP157 指出: 250V CDM 时能够在标准 ESD 控制流程下安全生产。

5.3 建议运行条件

在自然通风条件下的工作温度范围内测得(除非另有说明)

在建议的 Vcc 范围内测得 (除非另有说明)

Copyright © 2025 Texas Instruments Incorporated

20010 100 10011 (14.11.5011.0074)						
		最小值	标称值	最大值	单位	
V_{CC}	主电源电压	1.7		3.6	V	
V _{OUT}	输出电压,SDA, INT	0		5.5	V	
I _{OUT}	输出电流,SDA, INT			2	mA	
V_{IH}	输入高电压,SCL,SDA, INT	0.7			V_{CC}	
V _{IL}	输入低电压,SCL,SDA, INT			0.3	V _{CC}	
Δ V _{CC} / Δ t ⁽¹⁾	电源电压斜升速率	3			V/ms	
T _A	自然通风条件下的工作温度范围	-40		125	$^{\circ}$	

(1) 如果 VCC 斜升速率低于建议的电源电压斜升速率,请在上电或上电复位后运行唤醒和睡眠周期,以避免睡眠模式期间出现 I2C 地址毛 刺。在待机或连续模式下运行时,不需要执行此操作。

English Data Sheet: SLYS045

5.4 热性能信息

		TMAG5273	
	热性能指标⁽¹⁾	DBV (SOT-23)	单位
		6 引脚	
R ₀ JA	结至环境热阻	162	°C/W
R _{θ JC(top)}	结至外壳(顶部)热阻	81.6	°C/W
R ₀ JB	结至电路板热阻	50.1	°C/W
Ψ_{JT}	结至项部特征参数	30.7	°C/W
Ψ ЈВ	结至电路板特征参数	49.8	°C/W

(1) 有关新旧热指标的更多信息,请参阅半导体和 IC 封装热指标应用手册。

5.5 电气特性

在自然通风条件下的工作温度范围内测得(除非另有说明)在建议的V_{CC}范围内测得(除非另有说明)

	参数	测试条件	最小值	典型值	最大值	单位
SDA、 INT						
V _{OL}	输出低电压,SDA,INT 引脚	I _{OUT} = 2mA	0		0.4	V
I _{OZ}	输出漏电流,SDA,INT 引脚	输出禁用,V _{OZ} = 5.5V			±100	nA
t _{FALL_INT}	INT 输出下降时间	R _{PU} =10K Ω , C _L =20pF , V _{PU} =1.65V Ξ 5.5V		6		ns
t _{INT (ĪNT)}	脉冲模式下 INT 中断持续时间	INT_MODE =001b 或 010b		10		μs
t _{INT (SCL)}	SCL 中断持续时间	INT_MODE =011b 或 100b		10		μs
直流电源部分						
VCC _{UV} (1)	V _{CC} 下的欠压阈值	V _{CC} = 2.3V 至 3.6V	1.9	2.0	2.2	V
I _{ACTIVE}	活动模式电流	X、Y、Z 或热传感器有效转换, LP_LN = 0b		2.3		mA
I _{ACTIVE}	活动模式电流	X、Y、Z 或热传感器有效转换, LP_LN = 1b		3.0		mA
I _{STANDBY}	待机模式电流	器件处于触发模式,未开始转换		0.45		mA
I _{SLEEP}	睡眠模式电流			5		nA

提交文档反馈

Copyright © 2025 Texas Instruments Incorporated

English Data Sheet: SLYS045

在自然通风条件下的工作温度范围内测得(除非另有说明) 在建议的 V_{CC} 范围内测得(除非另有说明)

	参数	测试条件	最小值 典型值 最大值	单位
唤醒和睡眠 (W	/&S) 模式期间的平均功耗			
PELP LP L		磁性 1 通道转换 V _{CC} = 3.3V	160	μА
	W&S 模式电流消耗	磁性 1 通道转换 V _{CC} = 1.8V	156	μΑ
	唤醒间隔 1ms LP_LN = 0b	磁性 4 通道转换 V _{CC} = 3.3V	240	μA
		磁性 4 通道转换 V _{CC} = 1.8V	233	μΑ
		磁性 1 通道转换 V _{CC} = 3.3V	1.21	μА
	W&S 模式电流消耗	磁性 1 通道转换 V _{CC} = 1.8V	1.00	μΑ
	唤醒间隔 5000ms LP_LN = 0b	磁性 4 通道转换 V _{CC} = 3.3V	1.22	μΑ
		磁性 4 通道转换 V _{CC} = 1.8V	1.02	μA

(1) V_{CC} < 2.3V 时,DIAG_STATUS 和 VCC_UV_ER 位无效

5.6 温度传感器

在自然通风条件下的工作温度范围内测得(除非另有说明)在建议的 V_{CC} 范围内测得(除非另有说明)

	参数	测试条件	最小值	典型值	最大值	单位
T _{SENS_RANGE}	温度检测范围		-40		170 ⁽¹⁾	$^{\circ}$
T _{ADC_T0}	T _{SENS_T0} 的温度结果十进制值(来自 16 位格式)			17508		
T _{SENS_T0}	T _{ADC_T0} 的参考温度			25		$^{\circ}$
T _{ADC_RES}	温度检测分辨率(16位格式)			60.1		LSB/℃
NRMS_T	RMS (1 Σ) 温度噪声	CONV_AVG = 000b		0.4		$^{\circ}$
NRMS_T	RMS (1 Σ) 温度噪声	CONV_AVG = 101b		0.2		$^{\circ}\! \mathbb{C}$

(1) TI 建议不要超过建议运行条件表格中所指定自然通风条件下的工作温度

提交文档反馈

5.7 A1、B1、C1、D1 的磁特性

在自然通风条件下的工作温度范围内测得(除非另有说明)

	参数	测试条件	最小值 典型值	最大值	单位
B _{IN}	X、Y和Z的线性磁场范围	_RANGE = 0b	±40		mT
DIN	A、 T 和 Z 的线性磁场范围	_RANGE = 1b	±80		mT
SENS	∃ 樹 庇 V V ボ フ か	_RANGE = 0b , ±40mT	820		LSB/mT
SEINS	灵敏度,X、Y或Z轴	_RANGE = 1b , ±80mT	410		LSB/mT
SENS _{ER}	灵敏度误差,X、Y或Z轴	T _A = 25°C	±5.0%	±20.0%	
SENS _{ER_DR}	相对于 25°C 的灵敏度误差漂移 X、Y 或 Z 轴		±5.0%		
SENSUED	灵敏度线性误差	X、Y轴	±0.10%		
SENS _{LER}	T _A = 25°C	Z轴	±0.10%		
CENC	灵敏度不匹配	X-Y 轴	±0.50%		
SENS _{MS}	T _A = 25°C	Y-Z 轴或 X-Z 轴	±1.0%		
	X-Y 轴	±5%			
SENS _{MS_DR}	灵敏度失配漂移	Y-Z 轴或 X-Z 轴	±15%		
B _{off}	偏移	T _A = 25°C	±300	±1000	μΤ
B _{off_TC}	温漂		±3.0	±10.0	μT/°C
	RMS (1 Σ) 磁噪声 CONV_AVG = 000b	LP_LN = 0b X、Y 轴	125		μТ
	T _A = 25°C	LP_LN = 1b X、Y 轴	110		μТ
	RMS (1 Σ) 磁噪声 CONV AVG = 101b	LP_LN = 0b X、Y 轴	22	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	μТ
N	T _A = 25°C	LP_LN = 1b X、Y 轴	22		μТ
N _{RMS}	RMS (1 Σ) 磁噪声	LP_LN = 0b Z 轴	68		μТ
	CONV_AVG = 000b T _A = 25°C	LP_LN = 1b Z 轴	±40 ±80 ±40mT 820 ±80mT 410 ±5.0% ±5.0% ±5.0% ±0.10% ±0.10% ±0.50% ±1.0% ±15% ±15% 110 22 22		μΤ
	RMS (1 Σ) 磁噪声	LP_LN = 0b Z 轴	11	±80 820 410 ±5.0% ±20.0% ±5.0% ±0.10% ±0.10% ±0.50% ±1.0% ±15% ±15% 110 22 22 68 66 11 9 ±1.0 ±1.0 ±1.0	μΤ
	CONV_AVG = 101b T _A = 25°C	LP_LN = 1b Z 轴	9		μT
	角度误差	Y-Z	±1.0	±1000	度数
A _{ERR}	CONV_AVG = 101b	X-Z	±1.0		度数
	T _A = 25°C	X-Y	±0.5		度数

提交文档反馈 Copyright © 2025 Texas Instruments Incorporated

5.8 A2、B2、C2、D2 的磁特性

在自然通风条件下的工作温度范围内测得(除非另有说明)

	参数	测试条件	最小值 典型值	最大值	单位
D	X、Y和Z的线性磁场范围	_RANGE = 0b	±133		mT
B _{IN}	A、 T 和 Z 的线性概场范围	_RANGE = 1b	±266		mT
CENC	目標度 VVボフか	_RANGE = 0b , ±133mT	250		LSB/mT
SEINS	灭鳅及, X、Y 蚁 Z 轴	_RANGE = 0b , ±266mT	125		LSB/mT
SENS _{ER}	灵敏度误差。X、Y、Z轴	T _A = 25°C	±5.0%	±20.0%	
SENS _{ER_DR}	灵敏度误差漂移。X、Y、Z轴		±5.0%		
	灵敏度线性误差	X、Y轴	±0.10%		
SENS _{LER}	T _A = 25°C	Z轴	±0.10%		
05110	灵敏度不匹配	X-Y 轴	±0.50%		
SENS _{MS}	T _A = 25°C	Y-Z 轴或 X-Z 轴	±1.0%		
0510		X-Y 轴	±5%		
SENS _{MS_DR}		Y-Z 轴或 X-Z 轴	±15%		
	偏移	T _A = 25°C	±300	±20.0% ±1000	μΤ
B _{off}	温漂		±3.0		μT/°C
	RMS (1∑) 磁噪声	LP_LN = 0b X、Y 轴	147		μΤ
$egin{align*} egin{align*} { m Z} egin{align*}$	LP_LN = 1b X、Y 轴	145		μΤ	
		LP_LN = 0b X、Y 轴	RANGE = 0b		μΤ
N		LP_LN = 1b X、Y 轴		μΤ	
INRMS		LP_LN = 0b Z 轴		μΤ	
		LP_LN = 1b Z 轴	88		μΤ
	, , , , , , , , , , , , , , , , , , , ,	LP_LN = 0b Z 轴	15		μΤ
		LP_LN = 1b Z 轴	15	±20.0%	μT
	角度 误差	Y-Z	±1.0	0% 5% 5% 5% 300 ±1000 3.0 ±10 147 145 24 24 89 88 15 15 11.0 11.0	度数
A _{ERR}	CONV_AVG = 101b	X-Z	#266 250 125 #5.0% #20.0% #5.0% #20.0% #5.0% #0.10% #0.10% #1.0% #1.5% #15% #15% #147 145 24 24 24 89 88 15 15 15 ±1.0 ±1.0	度数	
	T _A = 25°C	X-Y	±0.50		度数

5.9 磁温度补偿特性

在自然通风条件下的工作温度范围内测得(除非另有说明)

	参数	测试条件	最小值 典型值 最大值	単位
TC_00	温度补偿(X、Y、Z轴)	MAG_TEMPCO = 00b	0	%/°C
TC_12	温度补偿(X、Y、Z轴)	MAG_TEMPCO = 01b	0.12	%/°C
TC_20	温度补偿(X、Y、Z轴)	MAG_TEMPCO = 11b	0.2	%/°C

Product Folder Links: TMAG5273

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈

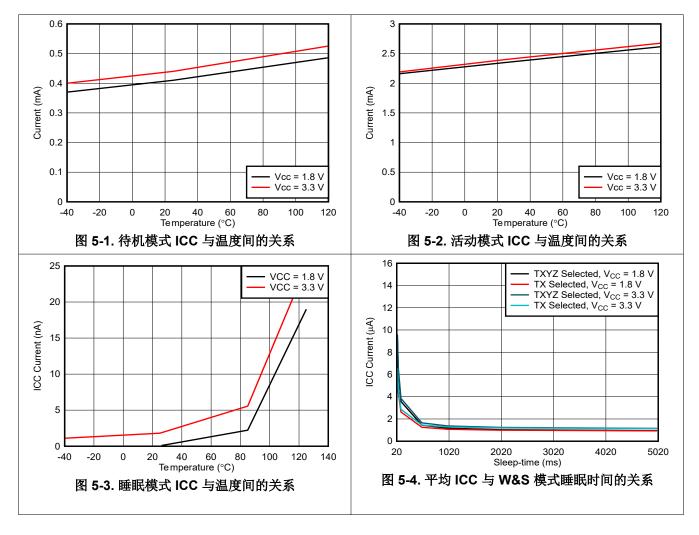
5.10 I2C 接口时序

在自然通风条件下的工作温度范围内测得(除非另有说明)

	参数	测试条件	最小值 典型值	最大值	单位
I2C 接口超快	速模式(V _{CC} =2.3V 至 3.6V)				
f _{I2C_fmp}	I2C 时钟 (SCL) 频率	负载 = 50pF V _{CC} = 2.3V 至 3.6V		1000	KHz
t _{whigh_fmp}	高电平时间: SCL 逻辑高电平持续时间		350		ns
t _{wlo_wfmp}	低电平时间: SCL 逻辑低电平持续时间		500		ns
t _{su_cs_fmp}	SDA 数据设置时间		50		ns
t _{h_cs_fmp}	SDA 数据保持时间		120		ns
t _{icr_fmp}	SDA 和 SCL 输入上升时间			120	ns
t _{icf_fmp}	SDA 和 SCL 输入下降时间			55	ns
t _{h_ST_fmp}	启动条件保持时间		0.1		μs
t _{su_SR_fmp}	重复启动条件建立时间		0.1	,	μs
t _{su_SP_fmp}	停止条件建立时间		0.1		μs
t _{w_SP_SR_fmp}	停止条件和启动条件之间的总线空闲时间		0.2		μs
I2C 接口快速	模式(V _{CC} =1.7V 至 3.6V)	·			
f _{I2C}	I2C 时钟 (SCL) 频率	负载 = 50pF V _{CC} = 1.7V 至 3.6V		400	KHz
t _{whigh}	高电平时间: SCL 逻辑高电平持续时间		600		ns
t _{wlow}	低电平时间: SCL 逻辑低电平持续时间		1300		ns
t _{su_cs}	SDA 数据设置时间		100		ns
t _{h_cs}	SDA 数据保持时间		0		ns
t _{icr}	SDA 和 SCL 输入上升时间			300	ns
t _{icf}	SDA 和 SCL 输入下降时间			300	ns
t _{h_ST}	启动条件保持时间		0.3		μs
t _{su_SR}	重复启动条件建立时间		0.3		μs
t _{su_SP}	停止条件建立时间		0.3		μs
t _{w_SP_SR}	停止条件和启动条件之间的总线空闲时间		0.6		μs

5.11 上电和转换时间

在自然通风条件下的工作温度范围内测得(除非另有说明)


	参数	测试条件	最小 值	典型 值	最大 值	单位
t _{start_power_up}	V _{CC} 电源电压超过 V _{CC_MIN} 后进入待机模式所需的时间			270		μs
t _{start_sleep}	从睡眠模式进入待机模式所需的时间 ⁽¹⁾			50		μs
t _{start_measure}	从待机模式进入连续测量模式所需的时间			70		μs
	转换时间	CONV_AVG = 000b ⁽²⁾		50		μs
t _{measure}	仅启用一个通道 OPERATING_MODE = 10b	CONV_AVG = 101b ⁽³⁾		825		μs
t _{go_sleep}	SCL 变为高电平后进入睡眠模式所需的时间			20		μs

- (1) 在待机或连续测量模式期间,器件仅识别来自主器件的 I2C 通信。器件处于睡眠模式时,有效的从地址会唤醒器件,但不会向主器件发送应答。应考虑在唤醒后寻址器件之前的启动时间。
- (2) 在 CONV_AVG = 000b 的情况下,对于为转换启用的每个额外磁通道,会添加 $25\mu s$ 。当 CONV_AVG = 000b 时,转换时间不随 T_CH_EN 位设置而改变。
- (3) 在 CONV_AVG = 101b 的情况下进行转换时,每个通道数据将收集 32 次。如果在 CONV_AVG = 101b 的情况下启用了一个额外的通道,则在计算两个通道的转换时间时要为 t_{measure} 加上 32×25µs = 800µs。

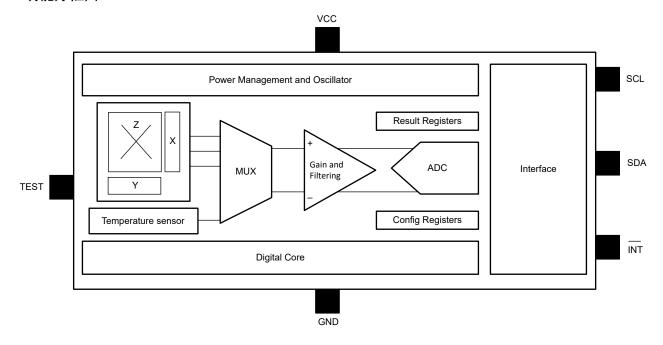
Copyright © 2025 Texas Instruments Incorporated Product Folder Links: *TMAG5273*

5.12 典型特性

测试条件为: $T_A = 25^{\circ}C$ (典型值)(除非另有说明)

Product Folder Links: TMAG5273

6 详细说明


6.1 概述

TMAG5273 IC 基于德州仪器 (TI) 的霍尔效应技术和精密混合信号电路。输出信号 (原始 $X \times Y \times Z$ 磁数据和温度数据)可通过 I^2C 接口访问。

该 IC 包含以下功能块和构建块:

- 电源管理和振荡器模块包含一个低功耗振荡器、偏置电路、欠压检测电路和一个快速振荡器。
- 传感和温度测量模块包含霍尔偏置、带多路复用器的霍尔传感器、噪声滤波器、积分器电路、温度传感器和 ADC。霍尔效应传感器数据和温度数据通过同一 ADC 进行多路复用。
- •接口模块包含 I^2C 控制电路、ESD 保护电路和所有 I/O 电路。TMAG5273 支持多个 I^2C 读取帧以及集成循环冗余校验 (CRC)。

6.2 功能方框图

Copyright © 2025 Texas Instruments Incorporated

6.3 特性说明

6.3.1 磁通量方向

如 图 6-1 所示, TMAG5273 在靠近磁体北极时生成正 ADC 代码。同样,如果磁体南极从同一方向接近,TMAG5273 会生成负 ADC 代码。

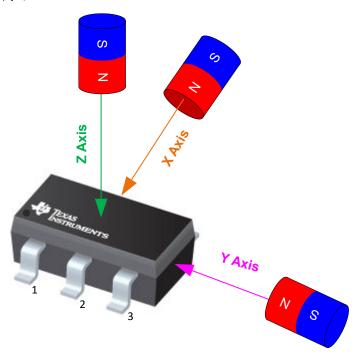


图 6-1. 灵敏度方向

6.3.2 传感器位置

图 6-2 展示了 X、Y、Z 霍尔元件在 TMAG5273 中的位置。

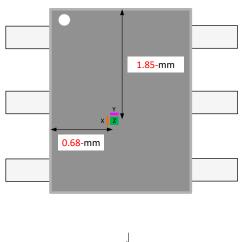


图 6-2. X、Y、Z 霍尔元件的位置

6.3.3 中断功能

TMAG5273 通过 INT 或 SCL 引脚支持灵活且可配置的中断功能。表 6-1 展示了在不同转换完成事件下,结果寄存器和 SET COUNT 位的更新情况。

		I ² C 总线繁忙,未	在与器件通信	I ² C 总线繁忙并正	在与器件通信	I ² C 总线不忙	
INT_MODE	模式说明	结果更新?	SET_COUNT 更新?	结果更新?	SET_COUNT 更新?	结果更新?	SET_COUNT 更新?
000b	无中断	是	是	否	否	是	是
001b	通过 INT 实现中 断	是	是	否	否	是	是
010b	通过 INT 实现中 断,I ² C 繁忙时 除外	是	是	否	否	是	是
011b	通过 SCL 实现 中断	是	是	否	否	是	是
100b	通过 SCL 实现 中断, I ² C 繁忙 时除外	否	否	否	否	是	是

表 6-1. 转换完成后的结果寄存器和 SET_COUNT 更新

备注

当将 SCL 引脚用于中断功能时, TI 不建议与多个辅助器件共用同一条 I²C 总线。如果同一 I²C 总线中存在其他辅助器件, SCL 中断可能会破坏与其他辅助器件的事务。

通过 SCL 实现中断

图 6-3 展示了通过 SCL 引脚实现中断功能的示例,其中器件编程为以预定义的间隔以唤醒和睡眠模式检测阈值交叉。唤醒间隔可以通过 SLEEPTIME 位进行设置。当器件检测磁性阈值交叉时,TMAG5273 会通过 SCL 引脚将固定宽度的中断信号置为有效,然后返回待机模式。

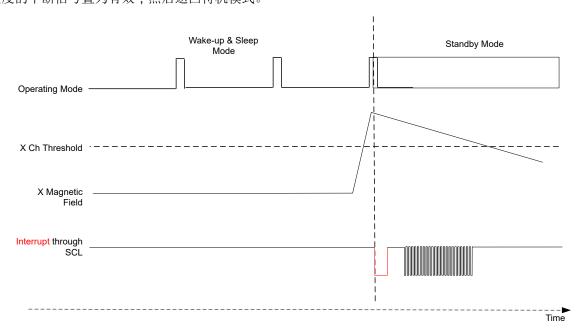


图 6-3. 通过 SCL 实现中断

Product Folder Links: TMAG5273

通过 INT 实现固定宽度中断

图 6-4 展示了通过 $\overline{\text{INT}}$ 引脚实现固定宽度中断功能的示例。器件编程为处于唤醒和睡眠模式以检测磁性阈值。 INT_STATE 寄存器位设置为 1b。当器件检测磁性阈值交叉时,TMAG5273 会通过 $\overline{\text{INT}}$ 引脚将固定宽度的中断信号置为有效,然后返回待机模式。

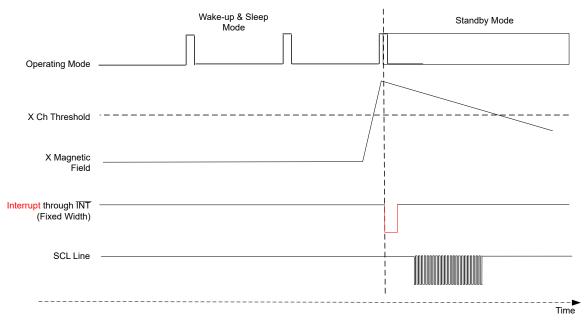


图 6-4. 通过 INT 实现固定宽度中断

通过 INT 实现锁存中断

图 6-5 展示了通过 INT 引脚实现锁存中断功能的示例。器件编程为处于唤醒和睡眠模式以检测磁性阈值。INT_STATE 寄存器位设置为 0b。当器件检测磁性阈值交叉时,TMAG5273 会通过 INT 引脚将一个锁存中断信号置为有效,然后返回待机模式。只有在器件通过 SCL 线收到有效地址后,中断锁存才会清除。

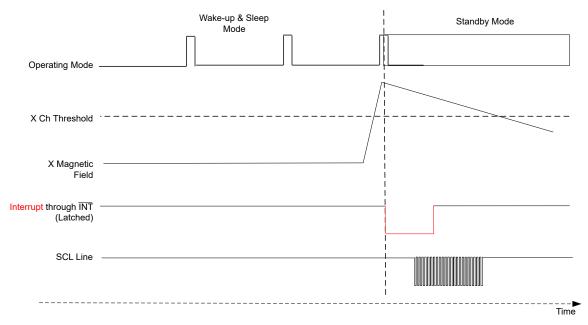


图 6-5. 通过 INT 实现锁存中断

提交文档反馈

6.3.4 器件 I²C 地址

表 6-2 展示了 TMAG5273 的默认出厂编程 I^2C 地址。上电后,需要使用出厂默认的 I^2C 地址对器件进行寻址。如果需要,主器件可以在上电后通过 $I2C_ADDRESS$ 寄存器位分配新的 I^2C 地址。

表 6-2. I2C 默认地址

器件版本	磁场范围	I ² C 地址(7 个 MSB 位)	I ² C 写入地址(8 位)	I ² C 读取地址(8 位)
TMAG5273A1		35h	6Ah	6Bh
TMAG5273B1	±40mT , ±80mT	22h	44h	45h
TMAG5273C1	1401111 , 1001111	78h	F0h	F1h
TMAG5273D1		44h	88h	89h
TMAG5273A2		35h	6Ah	6Bh
TMAG5273B2	±133mT , ±266mT	22h	44h	45h
TMAG5273C2	1 1 1 3 3 11 1 , 1 2 0 0 11 1 1	78h	F0h	F1h
TMAG5273D2		44h	88h	89h

Product Folder Links: TMAG5273

6.3.5 磁场范围选择

表 6-3 展示了 TMAG5273 器件的磁场范围选择。X、Y 和 Z 轴范围可以通过 X_Y_RANGE 和 Z_RANGE 寄存器 位进行选择。

表 6-3. 磁场范围选择

	范围寄存器设置	TMAG5273A1	TMAG5273A2	注释
X、Y轴磁场	X_Y_RANGE = 0b	±40mT	±133mT	
	X_Y_RANGE = 1b	±80mT	±266mT	更好的 SNR 性能
Z轴磁场	Z_RANGE = 0b	±40mT	±133mT	
	Z_RANGE = 1b	±80mT	±266mT	更好的 SNR 性能

6.3.6 更新速率设置

TMAG5273 提供多种更新速率,为系统设计人员提供了设计灵活性。可以通过 CONV_AVG 寄存器位选择不同的 更新速率。表 6-4 展示了 TMAG5273 的不同更新速率设置。

表 6-4 更新读率设置

次 6-4. 史刷 医学 () 直					
工作	寄存器设置	更新速率			→ 注释
模式	可行命以且	単轴	两轴	三轴	在件
X、Y、Z轴	CONV_AVG = 000b	20.0kSPS	13.3kSPS	10.0kSPS	最快的更新速率
X、Y、Z轴	CONV_AVG = 001b	13.3kSPS	8.0kSPS	5.7kSPS	
X、Y、Z轴	CONV_AVG = 010b	8.0kSPS	4.4kSPS	3.1kSPS	
X、Y、Z轴	CONV_AVG = 011b	4.4kSPS	2.4kSPS	1.6kSPS	
X、Y、Z轴	CONV_AVG = 100b	2.4kSPS	1.2kSPS	0.8kSPS	
X、Y、Z轴	CONV_AVG = 101b	1.2kSPS	0.6kSPS	0.4kSPS	最佳 SNR 情况

Product Folder Links: TMAG5273

提交文档反馈

17

English Data Sheet: SLYS045

6.4 器件功能模式

TMAG5273 支持多种功能模式,适用于各种应用,如图 6-6 中所述。通过在 OPERATING_MODE 寄存器位中设置相应的值来选择特定的功能模式。在 VCC 电源超过建议运行条件 (ROC) 表中指定的最小阈值后,器件开始上电。

6.4.1 待机 (触发) 模式

TMAG5273 首次上电后会进入待机模式。在此模式下,数字电路和振荡器处于激活状态,器件已准备好接受主器件的命令。根据命令,器件可以启动传感器数据转换,进入节能模式或通过 I^2C 接口开始数据传输。可以通过 I^2C 命令或 \overline{INT} 引脚触发新的转换。在此模式下,器件会将刚刚的转换结果数据保存在相应的结果寄存器中。上电和转换时间表中将器件从上电模式切换到待机模式所需的时间列为 $T_{\text{start power up}}$ 。

6.4.2 睡眠模式

TMAG5273 支持超低功耗睡眠模式,在该模式下器件可保留重要的用户配置设置。该器件在睡眠模式下不会保留转换结果数据。主器件可以通过 I^2C 接口或 \overline{INT} 引脚将器件从睡眠模式唤醒。在通过 I^2C 接口从睡眠模式转换到 待机模式期间, \overline{INT} 引脚会短暂设置中断。在器件完全转换到待机模式且 RESULT_STATUS 位设置为 Oh,表示没有完成转换时, \overline{INT} 引脚会恢复正常状态。器件从睡眠模式进入待机模式所需的时间由 $T_{\text{start sleep}}$ 表示。

6.4.3 唤醒和睡眠 (W&S) 模式

在此模式下,TMAG5273 可配置为进入睡眠状态并以特定的时间间隔唤醒,然后根据 SLEEPTIME 寄存器位设置测量传感器数据。该器件可以设置为通过 INT_CONFIG_1 寄存器生成中断。转换完成并且满足中断条件后,TMAG5273 会退出 W&S 模式并进入待机模式。在器件进入待机模式之前,最后测得的数据存储在相应的结果寄存器中。如果不满足中断条件,器件会继续处于 W&S 模式,并以指定的时间间隔唤醒和测量数据。主器件可以通过 I²C 总线或 INT 引脚随时唤醒处于 W&S 模式的 TMAG5273。在 W&S 模式期间,结果中断功能不可用。上电和转换时间表中将器件从 W&S 模式切换到待机模式所需的时间列为 T_{start sleep}。

Copyright © 2025 Texas Instruments Incorporated Product Folder Links: *TMAG5273*

6.4.4 连续测量模式

在此模式下,TMAG5273 会根据 SENSOR_CONFIG 和 DEVICE_CONFIG 寄存器设置持续测量传感器数据。在此模式下,可通过 I2C 线路访问结果寄存器。*上电和转换时间* 表中将器件从连续测量模式切换到待机模式所需的时间列为 $T_{\text{start measure}}$ 。

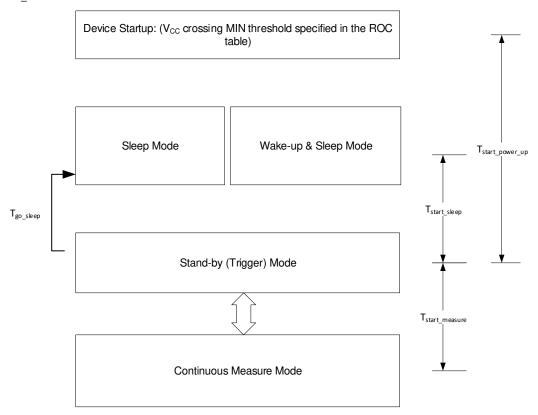


图 6-6. TMAG5273 上电时序

表 6-5 展示了 TMAG5273 器件的不同工作模式。

表 6-5. 工作模式

工作模式	器件功能	访问用户寄存器	保留用户配置	注释	
连续测量模式	连续测量 x、y、z 轴或温度数据	是	是		
待机模式	器件已准备好接受 I ² C 命令并开 始有效转换	是	是		
唤醒和睡眠模式	以特定的间隔唤醒以测量 x、y、z 轴或温度数据	否	是	支持 1ms、5ms、10ms、15ms、20ms、30ms、50ms、100ms、500ms、1000ms、1000ms、2000ms、5000ms 和 20000ms 间隔。	
睡眠模式	器件保留关键配置设置,但不保 留测量数据	否	是	主器件可以使用睡眠模式来实现唤醒和睡 眠模式不支持的其他节能间隔。	

Product Folder Links: TMAG5273

6.5 编程

6.5.1 I²C 接口

TMAG5273 提供了 I²C 接口,这是一种两线制接口,用于连接各种低速器件,例如微控制器、模数转换器和数模转换器、I/O 接口和嵌入式系统中的其他类似外设。

6.5.1.1 SCL

SCL 是用于通过 I²C 总线同步所有数据传输的时钟线路。

6.5.1.2 SDA

SDA 是 I²C 接口的双向数据线。

6.5.1.3 I2C 读取/写入

TMAG5273 支持针对不同应用的多个 I^2C 读取和写入帧。 $I2C_RD$ 和 CRC_EN 位提供多个读取帧,以优化所选应用的读取时间、数据分辨率和数据完整性。

6.5.1.3.1 标准 I²C 写入

图 6-7 展示了 TMAG5273 支持的标准 I²C 二字节写入命令示例。起始字节包含 7 位辅助器件地址和 R/W 命令位 "0"。第二个字节的 MSB 包含转换触发位。在该触发位写入"1"将在寄存器地址解码完成后开始新的转换。第二个字节的七个 LSB 位包含写入命令的起始寄存器地址。在两个命令字节之后,主器件开始发送要写入相应寄存器地址的数据。每个连续写入字节会发送辅助器件中连续寄存器地址对应的数据。

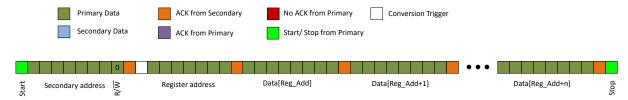


图 6-7. 标准 I²C 写入

6.5.1.3.2 通用广播写入

图 6-8 展示了 TMAG5273 支持的通用广播 I²C 写入命令示例。此命令对于同时配置 I²C 总线上的多个 I²C 器件非常有用。起始字节包含 8 位 "0"。第二个字节的 MSB 包含转换触发位。在该触发位写入"1"可在寄存器地址解码完成后开始新的转换。第二个字节的七个 LSB 位包含写入命令的起始寄存器地址。在两个命令字节之后,主器件开始发送要写入 I²C 总线上所有辅助器件所对应的寄存器地址的数据。每个连续写入字节为辅助器件中的连续寄存器地址发送数据。

图 6-8. 通用广播 I²C 写入

Product Folder Links: TMAG5273

Copyright © 2025 Texas Instruments Incorporated

6.5.1.3.3 标准 3 字节 I²C 读取

图 6-9 和图 6-10 展示了 TMAG5273 支持的标准 I^2C 三字节读取命令示例。起始字节包含 7 位辅助器件地址和 R/\overline{W} 命令位 "0"。第二个字节的 MSB 包含转换触发命令位。在该触发位写入"1"可在寄存器地址解码完成后开始新的转换。第二个字节的七个 LSB 位包含写入命令的起始寄存器地址。从辅助器件收到 ACK 信号后,主器件会再次发送辅助地址以及 R/\overline{W} 命令位"1"。辅助器件开始发送相应的寄存器数据,并且在主器件发送每个连续 ACK 后继续发送下一个寄存器数据。如果启用了 CRC,辅助器件会根据最近传输的四个寄存器字节的 CRC 计算结果来发送第五个 CRC 字节。

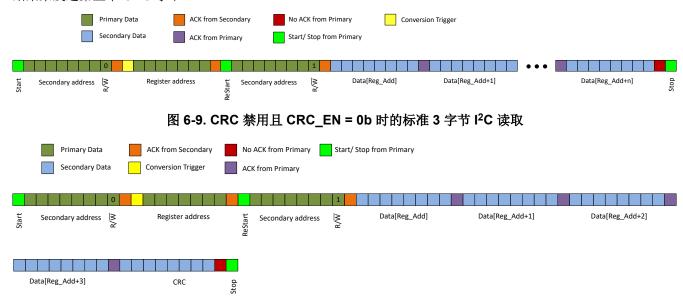


图 6-10. CRC 启用且 CRC_EN = 1b 时的标准 3 字节 I²C 读取

6.5.1.3.4 16 位数据的 1 字节 I2C 读取命令

图 6-11 和图 6-12 展示了 TMAG5273 支持的 1 字节 I^2C 读取命令示例。选择 $I2C_RD$ =01b 可启用此模式。命令字节包含 7 位辅助器件地址和 R/W 位上的 1。在此模式下,根据 MAG_CH_EN 和 T_CH_EN 位设置,该器件发送已启用通道的 16 位数据和 $CONV_STATUS$ 寄存器数据字节。如果启用了 CRC ,该器件会根据命令字节和当前数据包中发送的数据计算出的 CRC 值,发送一个额外的 CRC 字节。如果启用了多个通道,发送的数据会采用以 T、X、Y 和 Z 为顺序的连续数据字节形式。

Product Folder Links: TMAG5273

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈

图 6-12. CRC 启用且 CRC_EN = 1b 时 16 位数据的 1 字节 I2C 读取命令

Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: TMAG5273

提交文档反馈

6.5.1.3.5 8 位数据的 1 字节 I²C 读取命令

图 6-13 和图 6-14 展示了 TMAG5273 支持的 1 字节 I^2C 读取命令示例。选择 $I2C_RD$ =10b 可启用此模式。命令字节包含 7 位辅助器件地址和 R/W 位上的 1。在此模式下,根据 MAG_CH_EN 和 T_CH_EN 位设置,该器件发送已启用通道的 8 位数据和 $CONV_STATUS$ 寄存器数据字节。如果启用了 CRC ,该器件会根据命令字节和当前数据包中发送的数据计算出的 CRC 值,发送一个额外的 CRC 字节。如果启用了多个通道,发送的数据会采用以 T、X、Y 和 Z 为顺序的连续数据字节形式。

图 6-14. CRC 启用且 CRC_EN = 1b 时 8 位数据的 1 字节 I²C 读取命令

Three Axes & Temperature Measurement Example, TXYZ

English Data Sheet: SLYS045

备注

在8位数据的1字节读取命令中,可以无限制地发送任何通道组合。

6.5.1.3.6 I²C 读取 CRC

TMAG5273 在 I^2 C 读取期间支持可选的 CRC。CRC 可通过 CRC_EN 寄存器位启用。CRC 是对由 I^2 C 读取类型 决定的数据串执行的。CRC 信息作为数据字节之后的单字节发送。代码由多项式 $x^8 + x^2 + x + 1$ 生成。初始 CRC 位为 FFh。

可以使用以下公式来计算 CRC:

$$newcrc[0] = d[7] ^ d[6] ^ d[0] ^ c[0] ^ c[6] ^ c[7]$$
(2)

$$newcrc[1] = d[6] ^d[1] ^d[0] ^c[0] ^c[1] ^c[6]$$
(3)

$$newcrc[2] = d[6] ^ d[2] ^ d[1] ^ d[0] ^ c[0] ^ c[1] ^ c[2] ^ c[6]$$
(4)

$$newcrc[3] = d[7] ^ d[3] ^ d[2] ^ d[1] ^ c[1] ^ c[2] ^ c[3] ^ c[7]$$
(5)

$$newcrc[4] = d[4] ^ d[3] ^ d[2] ^ c[3] ^ c[4]$$
(6)

$$newcrc[5] = d[5] ^d[4] ^d[3] ^c[3] ^c[4] ^c[5]$$
 (7)

$$newcrc[6] = d[6] ^ d[5] ^ d[4] ^ c[4] ^ c[5] ^ c[6]$$
 (8)

$$newcrc[7] = d[7] ^ d[6] ^ d[5] ^ c[5] ^ c[6] ^ c[7]$$
(9)

以下示例展示了基于各种输入数据计算出的 CRC 字节:

I2C 数据 00h: CRC = F3h

I2C 数据 FFh: CRC = 00h

I2C 数据 80h: CRC = 7Ah

I2C 数据 4Ch: CRC = 10h

I2C 数据 E0h: CRC = 5Dh

I2C 数据 00000000h: CRC = D1h

I2C 数据 FFFFFFFFh: CRC = 0Fh

6.5.2 数据定义

6.5.2.1 磁传感器数据

X、Y和Z磁传感器数据存储在 x_MSB_RESULT 和 x_LSB_RESULT 寄存器中。图 6-15 显示了每个传感器输出以 16 位二进制补码格式存储在两个 8 位寄存器中。数据可以结合 MSB 和 LSB 寄存器以 16 位格式检索,也可以通过 MSB 寄存器以 8 位格式检索。

Copyright © 2025 Texas Instruments Incorporated Product Folder Links: *TMAG5273*

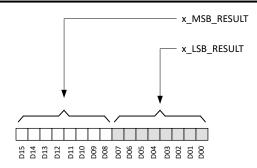


图 6-15. 磁传感器数据定义

对于 16 位数据,测量的磁场可以使用方程式 10 来计算,而对于 8 位数据,则可以使用方程式 11 来计算。

$$B = \frac{-\left(D_{15} \times 2^{15}\right) + \sum_{i=0}^{14} D_i \times 2^i}{2^{16}} \times 2|B_R|$$
 (10)

其中

- B表示磁场,单位为 mT。
- D_i 是图 6-15 中所示的数据位。
- B_R 是相应通道的磁场范围,以 mT 为单位。

$$B = \frac{-(D_{15} \times 2^{7}) + \sum_{i=0}^{6} D_{i+8} \times 2^{i}}{2^{8}} \times 2|B_{R}|$$
(11)

6.5.2.2 温度传感器数据

TMAG5273 将测量 - 40°C 至 170°C 的温度。温度传感器数据存储在 T_MSB_RESULT 和 T_LSB_RESULT 寄存器中。图 6-16 展示了以 16 位二进制补码格式存储在两个 8 位寄存器中的传感器输出。数据可以结合 MSB 和 LSB 寄存器以 16 位格式检索,也可以通过 MSB 寄存器以 8 位格式检索。

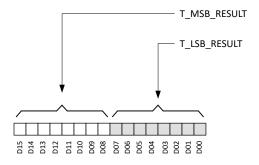


图 6-16. 温度传感器数据定义

对于 16 位数据,以摄氏度为单位的测得温度可以使用方程式 12 来计算,而对于 8 位数据,则可以使用方程式 13 来计算。

$$T = T_{SENS_T0} + \frac{T_{ADC_T} - T_{ADC_T0}}{T_{ADC_RES}}$$
 (12)

Product Folder Links: TMAG5273

其中

- T 是测得的温度,以摄氏度为单位。
- T_{SENS TO},如*电气特性*表中所列。
- T_{ADC RES} 是每摄氏度的 ADC 代码变化。
- T_{ADC_T0},如*电气特性*表中所列。

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈

• T_{ADC T} 是温度 T 下测得的 ADC 代码。

$$T = T_{SENS_T0} + \frac{256 \times \left(T_{ADC_T} - \frac{T_{ADC_T0}}{256} \right)}{T_{ADC_RES}}$$
 (13)

6.5.2.3 角度和幅度定义

TMAG5273 会根据 ANGLE_EN 寄存器位设置来计算相对于一对磁轴的角度。图 6-17 显示了存储在 ANGLE_RESULT_MSB 和 ANGLE_RESULT_LSB 寄存器中的角度信息。位 D04 至 D12 存储 0 至 360 度的角度整数值。位 D00 至 D03 位存储角度分数值。3 个 MSB 位始终填充为 b000。角度可以使用方程式 14 来计算。

$$A = \sum_{i=4}^{12} D_i \times 2^{i-4} + \frac{\sum_{i=0}^{3} D_i \times 2^i}{16}$$
 (14)

其中

- · A是以度为单位的角度。
- D_i 是图 6-17 中所示的数据位。

例如: 354.50 度会填充为 0001 0110 0010 1000b, 而 17.25 度会填充为 000 0001 0001 0100b。

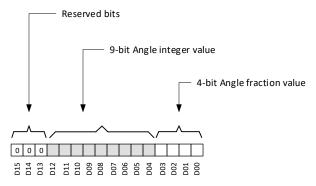


图 6-17. 角度数据定义

在角度计算过程中,使用方程式 15 来计算产生的矢量幅度。

$$M = \sqrt{MADC_{Ch1}^2 + MADC_{Ch2}^2}$$
 (15)

其中

• MADC_{Ch1} 和 MADC_{Ch2} 是为角度计算选择的两个磁通道对应的 ADC 代码。

图 6-18 显示了 MAGNITUDE_RESULT 寄存器中存储的幅度值。对于同轴角度测量,幅度值应在整个 360° 测量范围内保持恒定。

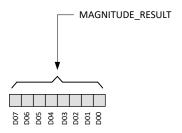


图 6-18. 幅度结果数据定义

Copyright © 2025 Texas Instruments Incorporated Product Folder Links: *TMAG5273*

6.5.2.4 磁传感器偏移校正

TMAG5273 支持对一对磁轴进行偏移校正(请参阅图 6-19)。 MAG_OFFSET_CONFIG_1 MAG OFFSET CONFIG 2 寄存器以二进制补码数据格式存储要校正的偏移值。例如,如果特定轴的未校正波形 的值超过 +2mT,则在相应的偏移校正寄存器中输入偏移校正值 -2mT。传感器的选择和顺序在 ANGLE_EN 寄存 器位设置中定义。这些偏移校正寄存器的默认值设置为零。

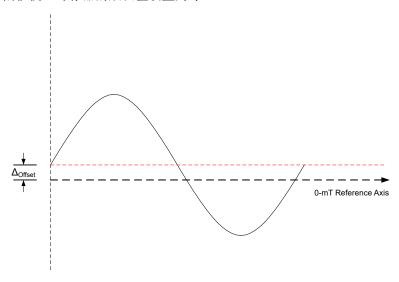


图 6-19. 磁传感器数据偏移校正

每个轴的偏移量可以使用方程式 16 来计算。例如,在 ±40mT 范围、MAG OFFSET CONFIG 1 设置为 1000 0000b 且 MAG_OFFSET_CONFIG_2 设置为 0001 0000b 的情况下,第一个轴的偏移校正为 -2.5mT,第二个轴 的偏移校正为 0.312mT。

$$\Delta_{\text{Offset}} = \frac{-(D_7 \times 2^7) + \sum_{i=0}^{6} D_i \times 2^i}{2^{12}} \times 2|B_R|$$
 (16)

其中

- Δ Offset 是要应用的偏移校正量,以 mT 为单位。
- D_i 是 MAG OFFSET CONFIG 1 或 MAG OFFSET CONFIG 2 寄存器中的数据位。
- B_R 是相应通道的磁场范围,以 mT 为单位。

或者,可以使用方程式 17 来计算目标偏移校正所需的 MAG OFFSET CONFIG 1 或 MAG OFFSET CONFIG 2 值。

$$MAG_OFFSET = \frac{2^{12} \times \Delta_{Offset}}{2|B_R|}$$
 (17)

其中

• MAG_OFFSET 是要在 MAG_OFFSET_CONFIG_1 或 MAG_OFFSET_CONFIG_2 寄存器中输入的十进制

Product Folder Links: TMAG5273

- Δ_{Offset} 是要应用的偏移校正量,以 mT 为单位。
- B_R 是相应通道的磁场范围,以 mT 为单位。

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈

7应用和实施

备注

以下应用部分中的信息不属于 TI 元件规格, TI 不担保其准确性和完整性。TI 的客户负责确定元件是否适合其用途,以及验证和测试其设计实现以确认系统功能。

7.1 应用信息

7.1.1 选择灵敏度选项

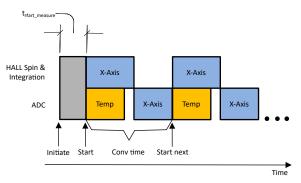
选择可测量所需磁通密度范围的最高 TMAG5273 灵敏度选项,从而尽可能地扩大 ADC 输入范围。

与距离很近的极小磁体相比,尺寸更大的磁体和距离更远的感应距离通常可以实现更好的位置精度,因为磁通密度随着磁体的接近而呈指数级增长。TI 在 ti.com 上的 TMAG5273 产品文件夹下创建了一个在线工具,用于帮助实现简单的磁体计算。

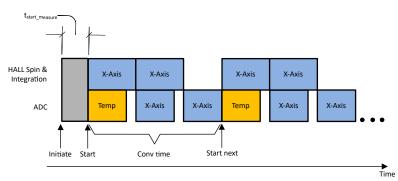
7.1.2 磁体的温度补偿

TMAG5273 温度补偿旨在直接补偿 MAG_TEMPCO 寄存器位中指定的几个磁体的平均温度漂移。随着温度升高,磁体的剩余感应 (B_r) 通常会减少;对于 NdFeB 磁体,温度每升高 1℃,剩余感应会减少 0.12%,而对于铁氧体磁体,温度每升高 1℃,剩余感应会减少 0.20%。如果不需要器件温度补偿,则将 MAG_TEMPCO 位设置为默认值 00b。

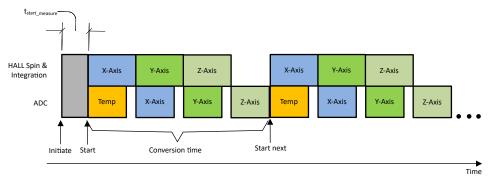
7.1.3 传感器转换


根据 MAG_CH_EN 和 CONV_AVG 寄存器位设置,可以采用多种转换方案。

7.1.3.1 连续转换


通过将 OPERATING_MODE 设置为 10b,将 TMAG5273 设置为连续转换模式。图 7-1 显示了几个连续转换示例。输入磁场会分两步处理。第一步,器件旋转霍尔传感器元件,并收集采样数据。第二步,ADC 块将模拟信号转换为数字位并存储在相应的结果寄存器中。当 ADC 开始处理第一个磁性样本时,旋转块可以开始处理另一个磁性样本。在此模式下,每次新转换开始时都会获取温度数据。该温度数据用于补偿磁性热漂移。

Copyright © 2025 Texas Instruments Incorporated Product Folder Links: *TMAG5273*



OPERATING_MODE = 10b, MAG_CH_EN = 0001b, CONV_AVG = 000b

OPERATING_MODE = 10b, MAG_CH_EN = 0001b, CONV_AVG = 001b

OPERATING_MODE = 10b, MAG_CH_EN = 0111b, CONV_AVG = 000b

图 7-1. 连续转换模式

7.1.3.2 触发转换

TMAG5273 支持在 OPERATING_MODE 设置为 00b 时进行触发器转换。触发事件可通过 I²C 命令或 INT 信号启 动。图 7-2 展示了温度传感器、X 传感器、Y 传感器和 Z 传感器激活时的触发器转换示例。

Product Folder Links: TMAG5273

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈

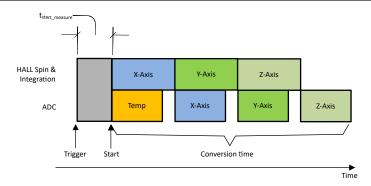


图 7-2. 温度传感器、X 传感器、Y 传感器和 Z 传感器的触发器转换

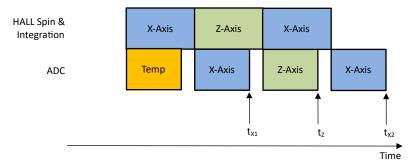
7.1.3.3 伪同步采样

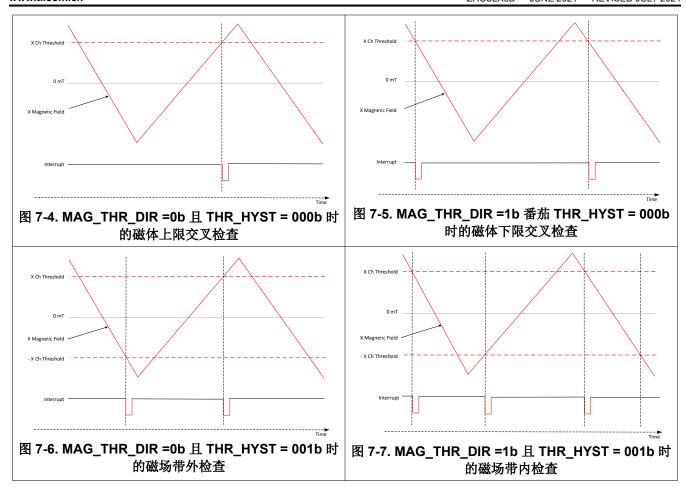
在绝对角度测量中,需要来自多个轴的应用传感器数据,才能计算出精确的角度。在不同时间通过同一信号链收集的磁场数据会在角度计算中引入误差。TMAG5273 提供伪同步采样数据收集模式来消除此误差。图 7-3 显示了一个示例,其中 MAG_CH_EN 设置为 1011b 来收集 XZX 数据。方程式 18 展示了 X 和 Z 传感器数据的时间戳相同。

$$t_{Z} = \frac{t_{X1} + t_{X2}}{2} \tag{18}$$

其中

• t_{X1} 、 t_{Z} 和 t_{X2} 是 X、Z、X 传感器数据完成的时间戳,如图 7-3 中定义。




图 7-3. XZX 磁场转换

TMAG5273 的垂直 X、Y 传感器比水平 Z 传感器表现出更多噪声。伪同步采样可用于在采集两组垂直传感器数据 时根据一组水平传感器数据均衡本底噪声,就像 XZX 或 YZY 模式示例中那样。

7.1.4 磁体限值检查

TMAG5273 可同时对单个轴或多个轴进行磁体限值检查。图 7-4 至图 7-7 展示了磁场高于、低于、退出磁带和进入磁带时的磁体限制交叉检测事件示例。如果磁场保持在图中的阴影区域,则器件将在每次新的转换时生成中断。MAG THR DIR 和 THR HYST 寄存器位帮助选择不同的限制交叉模式。

Copyright © 2025 Texas Instruments Incorporated Product Folder Links: *TMAG5273*

7.1.5 线性测量过程中的误差计算

TMAG5273 提供了多个独立的配置,可在 X、Y 和 Z 轴上执行线性位置测量。要计算线性测量过程中的预期误 差,必须了解每个单独误差源的贡献。相关误差源包括灵敏度误差、偏移量、噪声、跨轴灵敏度、迟滞、非线性 度、不同温度下的漂移、整个生命期间内的漂移等。对于像 TMAG5273 这样的 3 轴霍尔传感器, 跨轴灵敏度和迟 滞误差源无关紧要。可以使用方程式 19 来估算室温条件下的线性测量误差。

$$Error_{LM_25C} = \frac{\sqrt{(B \times SENS_{ER})^2 + B_{off}^2 + N_{RMS_25}^2}}{B} \times 100\%$$
 (19)

其中

- Error_{LM 25C} 是 25°C 条件下线性测量过程中的总误差,以%表示。
- B 是输入磁场。
- SENS_{ER} 是 25°C 时的灵敏度误差,以十进制数表示。例如,对于 5% 的灵敏度误差,请输入 0.05。
- Boff 是 25°C 时的偏移误差。
- N_{RMS 25} 是 25°C 时的 RMS 噪声。

在许多应用中,室温下的系统级校准可以消除 25°C 时的偏移误差和灵敏度误差。除了可以在微控制器中取平均值 外,还可以通过在器件内部最多除以32取平均值来降低噪声误差。可以使用方程式20来估算室温下校准后整个 温度范围内的线性测量误差。

Product Folder Links: TMAG5273

$$Error_{LM_Temp} = \frac{\sqrt{(B \times SENS_{DR})^2 + B_{Off_DR}^2 + N_{RMS_Temp}^2}}{B} \times 100\%$$
 (20)

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈

其中

- Error_{LM Temp} 是执行室温校准后线性测量过程中整个温度范围内的总误差,以 % 表示。
- B 是输入磁场。
- SENSDR 是 25°C 时的灵敏度漂移,以十进制数表示。例如,对于 5% 的灵敏度漂移,请输入 0.05。
- B_{off DR} 是 25°C 时的温漂值。
- N_{RMS Temp} 是整个温度范围内的 RMS 噪声。

如果未执行室温校准,整个温度范围内的总误差计算也必须考虑室温下的灵敏度误差和偏移误差(请参阅方程式21)。

$$Error_{LM_Temp_NCal} = \frac{\sqrt{(B \times SENS_{ER})^2 + (B \times SENS_{DR})^2 + B_{off}^2 + B_{off_DR}^2 + N_{RMS_Temp}^2}}{B} \times 100\%$$
 (21)

其中

• Error_{LM Temp NCal} 是在未进行室温校准的情况下,线性测量过程中整个温度范围内的总误差,以 % 表示。

各注

本节不考虑系统机械振动、磁体温度梯度、地磁场、非线性度、寿命漂移等误差源。在计算总体系统误差预算时,用户必须考虑这些额外的误差源。

7.1.6 角度测量过程中的误差计算

TMAG5273 提供片上 CORDIC 来测量相对于两个磁轴中任何一个的角度数据。也可以使用线性磁轴数据通过外部 CORDIC 来计算角度。要计算角度测量期间的预期误差,必须了解每个单独误差源的贡献。相关误差源包括灵敏度误差、偏移量、噪声、轴间不匹配、非线性度、不同温度下的漂移、整个生命周期内的漂移等。可以使用角度误差计算工具估算角度测量期间的总误差。

7.2 典型应用

由于采用非接触式设计且能够进行可靠的测量,磁性 3D 传感器非常受欢迎,特别是在需要在恶劣环境中进行长期测量的应用中。TMAG5273 可在各种工业和个人电子产品应用中提供设计灵活性。本节将详细讨论三个常见应用示例。

7.2.1 磁篡改检测

由于容易受到磁篡改,电表通常包含磁传感器,用于检测外部磁场并采取适当措施,例如断开电表的连接或对篡改收取罚款。图 7-8 展示了永磁体在三个方向上都可以导致磁篡改。另一种形式的磁篡改可通过由交流电源供电的外部线圈产生。TMAG5273 提供了灵活的工作模式和三个独立霍尔传感器配置,用于检测篡改。

Product Folder Links: TMAG5273

Copyright © 2025 Texas Instruments Incorporated

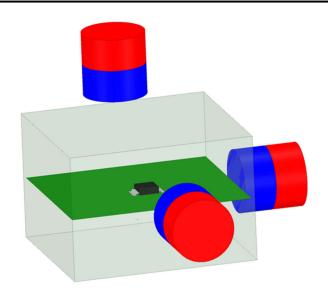


图 7-8. TMAG5273 磁篡改检测

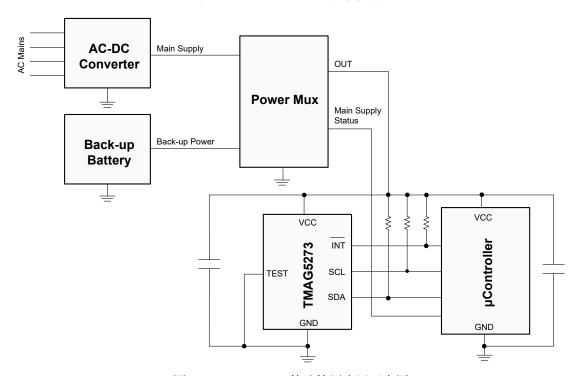


图 7-9. TMAG5273 篡改检测应用示意图

7.2.1.1 设计要求

此设计示例使用表 7-3 中列出的参数。

表 7-1. 设计参数

设计参数	采用交流电源工作	采用备用电池工作
器件	TMAG5273-A2	TMAG5273-A2
VCC	3.3V	3.6V 至 1.7V
工作模式	连续测量模式	唤醒和睡眠模式

Product Folder Links: TMAG5273

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈

表 7-1. 设计参数 (续)

设计参数	采用交流电源工作	采用备用电池工作
设计目标	读取原始磁性数据并确定篡改的幅度和类型 (交流或直流磁场)	如果发生磁篡改,则唤醒微控制器
用于检测篡改的时序预算	<100ms	<5s
所需的电池寿命	不适用	5 年

7.2.1.2 详细设计过程

选择一个电源多路复用器,允许以通过交流电力线为系统供电作为默认选项。在断电的情况下,电源多路复用器会自动切换到备用电池为系统供电。来自交流/直流稳压器或多路复用器的状态信号会在发生断电事件时通知微控制器。在收到状态信号时,微控制器会将 TMAG5273 配置为以唤醒和睡眠模式运行。TMAG5273 会以预先指定的间隔唤醒并测量磁场。如果未发生篡改,器件会重复该周期。如果发生篡改,器件可以退出唤醒和睡眠模式并向微控制器发送中断信号。

执行以下步骤,将器件设置为连续测量模式,并尽量减少备用电池模式期间所需的步骤数量:

- 将 DEVICE_CONFIG_1 寄存器设置为 1h。
- 将 SENSOR_CONFIG_1 寄存器设置为 79h。
- 将 T CONFIG 寄存器设置为 1h。
- 将 INT CONFIG 1 寄存器设置为 A4h。
- 将 DEVICE CONFIG 2 寄存器设置为 22h。
- 等待 \overline{INT} 信号置为低电平以指示转换完成。当 \overline{INT} 变为低电平时,使用一个读取命令执行 16 位 T、X、Y、Z 寄存器读取(请参阅图 7-10)。

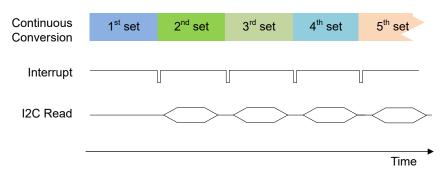


图 7-10. 使用交流线路电源进行连续转换

在断电事件期间,只需执行以下步骤即可将传感器设置为唤醒和睡眠模式:

- 将 INT CONFIG 1 寄存器设置为 64h。
- 将 DEVICE_CONFIG_2 寄存器设置为 23h。
- 如果发生阈值检测, INT 信号将置为低电平以唤醒微控制器。当 INT 变为低电平时,使用一个读取命令执行 16 位 T、X、Y、Z 寄存器读取(请参阅图 7-11)。

Copyright © 2025 Texas Instruments Incorporated Product Folder Links: *TMAG5273*

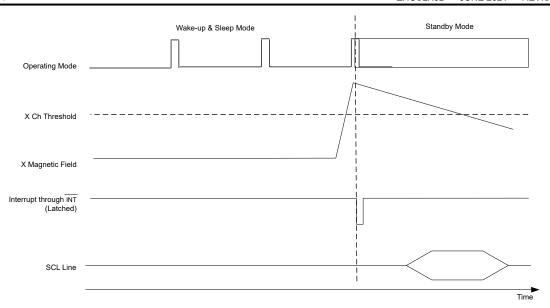


图 7-11. 使用备用电池以唤醒和睡眠模式运行

7.2.1.3 应用曲线

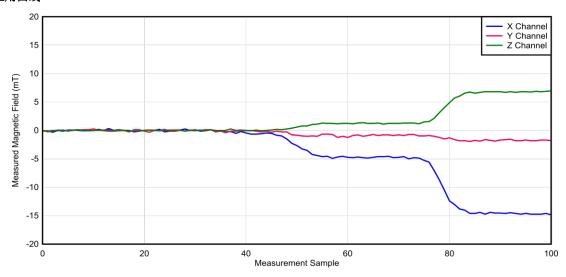


图 7-12. 连续转换期间的篡改检测

7.2.2 I²C 地址扩展

TMAG5273 具有四个不同的出厂编程 I²C 地址。该器件还支持通过配置 I2C ADDRESS 寄存器来指定额外的 I²C 地址。该寄存器使用 7 位,可提供 128 个不同的地址。在选择单个 I2C 总线中的最大传感器数量之前,应考虑总 线负载、最大时钟频率、微控制器提供的 GPIO 等系统限制。

Product Folder Links: TMAG5273

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈

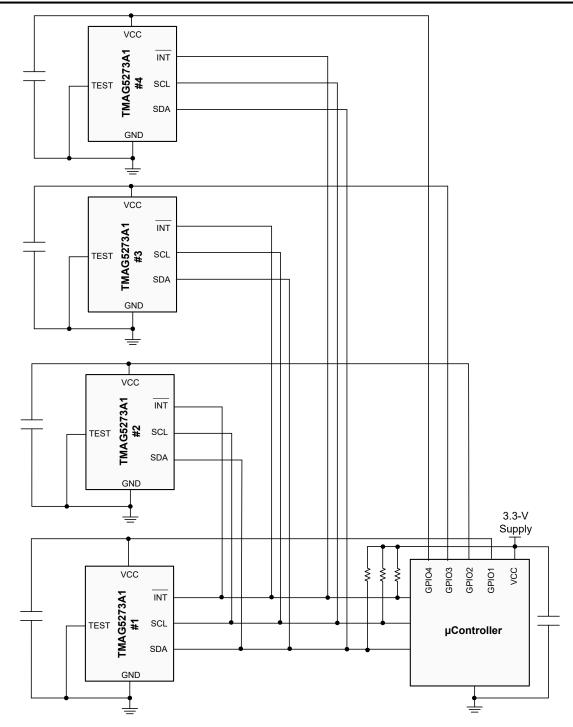


图 7-13. TMAG5273 I²C 地址扩展应用示意图

7.2.2.1 设计要求

此设计示例使用表 7-3 中列出的参数。

表 7-2. 设计参数

参数	设计目标
可订购器件	TMAG5273A1
VCC	3.3V

提交文档反馈

Copyright © 2025 Texas Instruments Incorporated

表 7-2. 设计参数 (续)

参数	设计目标
同一总线上的器件数	4 (同样的方法可用于扩展 I ² C 总线上的传感器数量)
设计目标	优化 GPIO 数量和元件数量
每个传感器的电流电源	5mA,由微控制器 GPIO 提供

7.2.2.2 详细设计过程

选择具有 5mA 电流供电能力的 GPIO。图 7-13 展示了 SCL、SDA 线路和 \overline{INT} 引脚可以共享。但是,当 \overline{INT} 引脚由多个传感器共享时,需要对该引脚的功能进行分析。例如,如果传感器配置为通过 \overline{INT} 引脚生成中断,微控制器需要读取所有传感器以确定发送中断的具体传感器。按顺序执行以下步骤,将新的 I^2C 地址分配给图 7-14 中所示的四个 TMAG5273:

- 打开 GPIO#1 并等待 t_{start_power_up} 时长。
- 使用出厂编程的地址对器件 1 寻址。写入 I2C_ADDRESS 寄存器以分配新地址。
- 打开 GPIO#2 并等待 t_{start power up} 时长。
- 使用出厂编程的地址对器样 2 寻址。写入 I2C ADDRESS 寄存器以分配新的唯一地址。
- 打开 GPIO#3 并等待 t_{start power up} 时长。
- 使用出厂编程的地址对器件 3 寻址。写入 I2C ADDRESS 寄存器以分配新的唯一地址。
- 打开 GPIO#4 并等待 t_{start_power_up} 时长。
- 使用出厂编程的地址对器件 4 寻址。写入 I2C ADDRESS 寄存器以分配新的唯一地址。

如果发生断电或上电复位情况,请重复上述步骤。

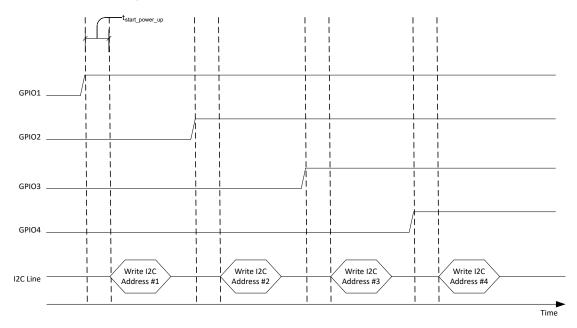


图 7-14. 四个传感器的上电时序和 I²C 地址分配

7.2.3 角度测量

由于采用非接触式设计且能够进行可靠的测量,磁性角度传感器非常受欢迎,特别是在需要在恶劣环境中进行长期测量的应用中。TMAG5273 提供了片上角度计算器,可根据任意两个磁轴进行角度测量。两个相关轴可以在ANGLE_EN 寄存器位中选择。该器件提供完整的 360 度角度输出。在角度计算中会考虑多个误差源,包括灵敏度误差、偏移误差、线性误差、噪声、机械振动、温度漂移等。

Product Folder Links: TMAG5273

English Data Sheet: SLYS045

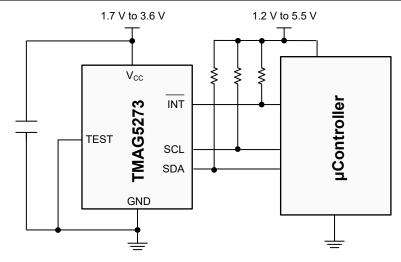


图 7-15. TMAG5273 角度测量应用示意图

7.2.3.1 设计要求

此设计示例使用表 7-3 中列出的参数。

	X: 0. X/1 = X	
设计参数	同轴测量	离轴测量
器件	TMAG5273-A1	TMAG5273-A1
VCC	3.3V	3.3V
器件位置	磁体正下方	在磁体的相邻侧
磁体	圆柱磁体:4.7625mm 直径,12.7mm 厚,钕 磁体 N52,Br = 1480	圆柱磁体:4.7625mm 直径,12.7mm 厚,钕 磁体 N52,Br = 1480
磁场范围选择	根据传感器可能检测到的最强磁场,为两个轴 选择相同的范围	根据传感器可能检测到的最强磁场,为两个轴 选择相同的范围
RPM	<600	<600
所需精度	360° 旋转时小于 2°	360° 旋转时小于 2°

表 7-3. 设计参数

7.2.3.2 详细设计过程

为了准确测量角度,必须通过在 MAG_GAIN_CONFIG 寄存器中选择适当的增益调整值来对两个轴的振幅进行标准化。增益调整值是介于 0 和 1 之间的十进制小数。要计算此小数值,必须遵循以下步骤:

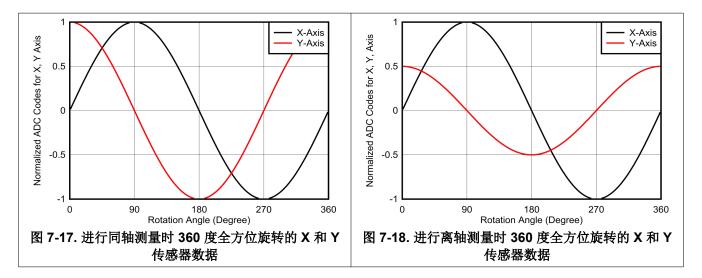
- 将器件设置为 32 倍平均模式,并将轴完整旋转 360 度。
- 记录完整 360 度旋转对应的两个轴传感器 ADC 代码。
- 完整 360 度旋转的归一化图如图 7-17 或图 7-18 所示。
- 测量每个轴的最大峰峰值 ADC 代码增量: AX 和 AY。
- 如果 $A_X > A_Y$,请将 MAG_GAIN_CH 寄存器位设置为 Ob。计算 X 轴的增益调整值: $G_X = \frac{A_Y}{A_X}$
- 如果 $A_X < A_Y$,请将 MAG_GAIN_CH 寄存器位设置为 1b。计算 Y 轴的增益调整值: $G_Y = \frac{1}{G_X}$
- GAIN_VALUE 寄存器位中的目标二进制增益设置可以根据公式 G_X 或 G_Y = GAIN_VALUE_{decimal}/ 256 来计算。

示例 1:如果 $A_X = A_Y = 60,000$, GAIN_VALUE 寄存器位会设置为默认 0000 0000b。

示例 2:如果 A_X = 60,000 且 A_Y = 45,000,则 G_X = 45,000/60,000 =0.75。将 MAG_GAIN_CH 设置为 0b 并将 GAIN_VALUE 设置为 1100 0000b。

示例 3:如果 A_X = 45,000 且 A_Y = 60,000,则 G_X = (60,000/45,000) =1.33。由于 G_X > 1,增益调整需要在 G_Y = 1/ G_X 的情况下应用于 Y 轴。将 MAG_GAIN_CH 设置为 1b 并将 GAIN_VALUE 设置为 1100 0000b。

Copyright © 2025 Texas Instruments Incorporated


7.2.3.2.1 角度测量的增益调整

常见的测量拓扑包括同轴或离轴角度测量中的角度位置测量,如图 7-16 所示。尽可能选择同轴测量拓扑,因为这 样可以实现磁场和器件测量范围的最佳优化。TMAG5273提供了片上增益调整选项,以应对机械位置错位问题。

图 7-16. 同轴角度测量与离轴角度测量

7.2.3.3 应用曲线

7.3 最佳设计实践

TMAG5273 会在转换结束时更新结果寄存器。结果寄存器的 I²C 读取需要与转换更新时间同步,以避免在结果寄 存器更新时读取结果数据。对于时序预算有严格要求的应用,可以在转换完成时使用 Ⅲ 信号通知主器件。

7.4 电源相关建议

必须使用靠近器件的去耦电容器以最小电感提供局部能量。TI 建议使用容值至少为 0.01µF 的陶瓷电容器。将 TEST 引脚接地。

Product Folder Links: TMAG5273

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈

39

7.5 布局

7.5.1 布局指南

磁场在没有明显干扰的情况下穿过大多数非铁磁材料。将霍尔效应传感器嵌入塑料或铝制外壳中来感应外部磁体 是惯常的做法。磁场也很容易穿过大多数印刷电路板 (PCB),这使得将磁体放置在 PCB 另一侧成为可能。

7.5.2 布局示例



图 7-19. TMAG5273 布局示例

Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: TMAG5273

8 寄存器映射

8.1 TMAG5273 寄存器

表 8-1 列出了 TMAG5273 寄存器。表 8-1 中未列出的所有寄存器偏移地址都应视为保留的位置,并且不应修改寄存器内容。

用户配置寄存器

表 8-1. TMAG5273 寄存器

		衣 0-1. TWAG5275 町行船	
偏移	首字母缩写词	寄存器名称	部分
0h	DEVICE_CONFIG_1	配置器件工作模式	前往
1h	DEVICE_CONFIG_2	配置器件工作模式	前往
2h	SENSOR_CONFIG_1	传感器器件工作模式	前往
3h	SENSOR_CONFIG_2	传感器器件工作模式	前往
4h	X_THR_CONFIG	X阈值配置	前往
5h	Y_THR_CONFIG	Y阈值配置	前往
6h	Z_THR_CONFIG	Z 阈值配置	前往
7h	T_CONFIG	温度传感器配置	前往
8h	INT_CONFIG_1	配置器件工作模式	前往
9h	MAG_GAIN_CONFIG	配置器件工作模式	前往
Ah	MAG_OFFSET_CONFIG_1	配置器件工作模式	前往
Bh	MAG_OFFSET_CONFIG_2	配置器件工作模式	前往
Ch	I2C_ADDRESS	I2C 地址寄存器	前往
Dh	DEVICE_ID	器件裸片的 ID	前往
Eh	MANUFACTURER_ID_LSB	制造商 ID 低位字节	前往
Fh	MANUFACTURER_ID_MSB	制造商 ID 高位字节	前往
10h	T_MSB_RESULT	转换结果寄存器	前往
11h	T_LSB_RESULT	转换结果寄存器	前往
12h	X_MSB_RESULT	转换结果寄存器	前往
13h	X_LSB_RESULT	转换结果寄存器	前往
14h	Y_MSB_RESULT	转换结果寄存器	前往
15h	Y_LSB_RESULT	转换结果寄存器	前往
16h	Z_MSB_RESULT	转换结果寄存器	前往
17h	Z_LSB_RESULT	转换结果寄存器	前往
18h	CONV_STATUS	转换状态寄存器	前往
19h	ANGLE_RESULT_MSB	转换结果寄存器	前往
1Ah	ANGLE_RESULT_LSB	转换结果寄存器	前往
1Bh	MAGNITUDE_RESULT	转换结果寄存器	前往
1Ch	DEVICE_STATUS	Device_Diag 状态寄存器	前往

复杂的位访问类型经过编码可适应小型表单元。表 8-2 展示了适用于此部分中访问类型的代码。

表 8-2. TMAG5273 访问类型代码

れ o E. TillA O D I O N 内 八 上 N 内						
访问类型	代码	说明				
读取类型						
R	R	读取				
写入类型						
W	W	写入				

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈

41

表 8-2. TMAG5273 访问类型代码 (续)

访问类型	代码	说明
W1CP	1C	写入 1 以清除 需要访问权限
复位或默认值		
- n		复位后的值或默认值

8.1.1 DEVICE_CONFIG_1 寄存器 (偏移 = 0h) [复位 = 0h]

表 8-3 展示了 DEVICE_CONFIG_1。

返回到汇总表。

表 8-3. DEVICE_CONFIG_1 寄存器字段说明

	X 0 0. D 2 1 10 2 1 10 11 11 1 1 X 20 17							
位	字段	类型	复位	说明				
7	CRC_EN	R/W	Oh	启用发送 I2C CRC 字节 0h = CRC 禁用 1h = CRC 启用				
6-5	MAG_TEMPCO	R/W	Oh	磁体的温度系数 Oh = 0% (无温度补偿) 1h = 0.12%/°C (NdBFe) 2h = 保留 3h = 0.2%/°C (陶瓷)				
4-2	CONV_AVG	R/W	Oh	支持对传感器数据进行额外采样,以降低噪声影响(或提高分辨率) 0h = 1x 平均值,10.0kSPS(3 个轴)或 20kSPS(1 个轴) 1h = 2x 平均值,5.7kSPS(3 个轴)或 13.3kSPS(1 个轴) 2h = 4x 平均值,3.1kSPS(3 个轴)或 8.0kSPS(1 个轴) 3h = 8x 平均值,1.6kSPS(3 个轴)或 4.4kSPS(1 个轴) 4h = 16x 平均值,0.8kSPS(3 个轴)或 2.4kSPS(1 个轴) 5h = 32x 平均值,0.4kSPS(3 个轴)或 1.2kSPS(1 个轴)				
1-0	I2C_RD	R/W	Oh	定义 I2C 读取模式 Oh = 标准 I2C 3 字节读取命令 1h = 用于读取 16 位传感器数据和转换状态的 1 字节 I2C 读取命令 2h = 用于读取 8 位传感器 MSB 数据和转换状态的 1 字节 I2C 读取命令 令 3h = 保留				

8.1.2 DEVICE_CONFIG_2 寄存器 (偏移 = 1h) [复位 = 0h]

表 8-4 展示了 DEVICE_CONFIG_2。

返回到汇总表。

表 8-4. DEVICE_CONFIG_2 寄存器字段说明

位	字段	类型	复位	说明
7-5	THR_HYST	R/W	0h	为中断功能选择阈值
				Oh = 获取每个 x_THR_CONFIG 寄存器的二进制补码值以创建相应轴
				的磁阈值
				1h = 获取 x_THR_CONFIG 寄存器的 7 个 LSB 位以创建两个具有相
				同幅度的相反磁阈值(一个北极和另一个南极)。
				2h = 保留
				3h = 保留
				4h = 保留
				5h = 保留
				6h = 保留
				7h = 保留

Product Folder Links: TMAG5273

Copyright © 2025 Texas Instruments Incorporated

表 8-4. DEVICE CONFIG 2 寄存器字段说明 (续)

	ベッ・DEVICE_COM IO_E 時日間 1 秋60万(次)						
位	字段	类型	复位	说明			
4	LP_LN	R/W	0h	在低有效电流模式或低噪声模式之间选择模式 Oh = 低有效电流模式 Th = 低噪声模式			
3	I2C_GLITCH_FILTER	R/W	0h	I2C 干扰滤波器 Oh = 干扰滤波器开启 Th = 干扰滤波器关闭			
2	TRIGGER_MODE	R/W	0h	根据已配置的寄存器选择启动单次转换的条件。正在运行的转换会在 执行触发之前完成。冗余触发将被忽略。TRIGGER_MODE 仅在 OPERATING_MODE 中明确提及的模式期间可用。 0h = 转换从 I2C 命令位开始,默认设置 1h = 转换通过 INT 引脚上的触发信号开始			
1-0	OPERATING_MODE	R/W	0h	如果器件从唤醒和睡眠模式转换到待机模式,则选择工作模式并根据工作模式更新值。 Oh = 待机模式(在触发事件时开始新的转换) 1h = 睡眠模式 2h = 连续测量模式 3h = 唤醒和睡眠模式(W&S 模式)			

8.1.3 SENSOR_CONFIG_1 寄存器 (偏移 = 2h) [复位 = 0h]

表 8-5 展示了 SENSOR_CONFIG_1。

返回到汇总表。

表 8-5. SENSOR_CONFIG_1 寄存器字段说明

位	字段	类型	复位	说明
7-4	MAG_CH_EN	R/W	Oh	启用磁轴通道的数据采集 Oh = 所有磁通道关闭,默认设置 1h = X 通道启用 2h = Y 通道启用 3h = X、Y 通道启用 4h = Z 通道启用 5h = Z、X 通道启用 6h = Y、Z 通道启用 7h = X、Y、Z 通道启用 8h = XYX 通道启用 9h = YXY 通道启用 8h = YZY 通道启用 Ch = 保留 Dh = 保留 Eh = 保留 Fh = 保留
3-0	SLEEPTIME	R/W	Oh	选择 OPERATING_MODE =11b 时转换之间处于低功耗模式的时间 0h = 1ms

8.1.4 SENSOR_CONFIG_2 寄存器(偏移 = 3h)[复位 = 0h]

表 8-6 展示了 SENSOR_CONFIG_2。

返回到汇总表。

表 8-6. SENSOR_CONFIG_2 寄存器字段说明

位	字段	类型	复位	说明
7	保留	R	0h	保留
6	THRX_COUNT	R/W	Oh	中断置为有效之前的阈值交叉次数 0h = 1 阈值交叉 1h = 4 阈值交叉
5	MAG_THR_DIR	R/W	Oh	选择阈值检查的方向。当 THR_HYST > 001b 时,该位被忽略 0h = 为高于阈值的字段设置中断 1h = 为低于阈值的字段设置中断
4	MAG_GAIN_CH	R/W	Oh	为在 MAG_GAIN_CONFIG 寄存器中输入的幅度增益校正值选择轴 0h = 选择第一个通道进行增益调整 1h = 选择第二个通道进行增益调整
3-2	ANGLE_EN	R/W	0h	启用两个选定磁通道之间的角度计算、磁增益和偏移校正 0h = 角度计算、幅度增益和偏移校正未启用 1h = X 1st, Y 2nd 2h = Y 1st, Z 2nd 3h = X 1st, Z 2nd
1	X_Y_RANGE	R/W	0h	从 2 个不同的选项中选择 X 轴和 Y 轴磁场范围。 0h = ±40mT (TMAG5273A1) 或 ±133mT (TMAG5273A2),默认设置 1h = ±80mT (TMAG5273A1) 或 ±266mT (TMAG5273A2)
0	Z_RANGE	R/W	Oh	从 2 个不同的选项中选择 Z 轴磁场范围。 0h = ±40mT (TMAG5273A1) 或 ±133mT (TMAG5273A2),默认设置 1h = ±80mT (TMAG5273A1) 或 ±266mT (TMAG5273A2)

8.1.5 X_THR_CONFIG 寄存器 (偏移 = 4h) [复位 = 0h]

表 8-7 展示了 X_THR_CONFIG。

返回到汇总表。

表 8-7. X THR CONFIG 寄存器字段说明

位	字段	类型	复位	说明
7-0	X_THR_CONFIG	R/W		用于限制检查的 8 位二进制补码 X 轴阈值代码。可能的阈值输入范围可以是 +/-128。对于 A1,阈值(以 mT 为单位)的计算方式为(40(1+X_Y_RANGE)/128)*X_THR_CONFIG,而对于 A2,则为(133(1+X_Y_RANGE)/128)*X_THR_CONFIG。默认值 0h 表示无阈值比较。

8.1.6 Y_THR_CONFIG 寄存器 (偏移 = 5h) [复位 = 0h]

表 8-8 展示了 Y_THR_CONFIG。

返回到汇总表。

表 8-8. Y THR CONFIG 寄存器字段说明

位	字段	类型	复位	说明
7-0	Y_THR_CONFIG	R/W		用于限制检查的 8 位二进制补码 Y 轴阈值代码。可能的阈值输入范围可以是 +/-128。对于 A1,阈值 (以 mT 为单位)的计算方式为 (40(1+X_Y_RANGE)/128)*X_THR_CONFIG,而对于 A2,则为 (133(1+X_Y_RANGE)/128)*X_THR_CONFIG。默认值 0h 表示无阈值比较。

8.1.7 Z_THR_CONFIG 寄存器 (偏移 = 6h) [复位 = 0h]

表 8-9 展示了 Z_THR_CONFIG。

返回到汇总表。

表 8-9. Z_THR_CONFIG 寄存器字段说明

位	字段	类型	复位	说明
114	子权	火型		近切
7-0	Z_THR_CONFIG	R/W	0h	用于限制检查的8位二进制补码Z轴阈值代码。可能的阈值输入范围
				可以是 +/-128。对于 A1,阈值(以 mT 为单位)的计算方式为
				(40(1+Z_RANGE)/128)*Z_THR_CONFIG,而对于 A2,则为
				(133(1+Z_RANGE)/128)*Z_THR_CONFIG。默认值 0h 表示无阈值比
				较。

8.1.8 T_CONFIG 寄存器 (偏移 = 7h) [复位 = 0h]

表 8-10 展示了 T_CONFIG。

返回到汇总表。

表 8-10. T_CONFIG 寄存器字段说明

位	字段	类型	复位	说明
7-1	T_THR_CONFIG	R/W	0h	用户输入的温度阈值代码。有效温度阈值范围为 -41°C 至 170°C , -41°C 的阈值代码为 1Ah , 而 170°C 的阈值代码为 34h。分辨率为 8°C/LSB。默认值 0h 表示无阈值比较。
0	T_CH_EN	R/W	0h	启用温度通道的数据采集 Oh = 温度通道禁用 1h = 温度通道启用

8.1.9 INT_CONFIG_1 寄存器 (偏移 = 8h) [复位 = 0h]

表 8-11 展示了 INT_CONFIG_1。

返回到汇总表。

表 8-11. INT_CONFIG_1 寄存器字段说明

位	字段	类型	复位	说明
7	RSLT_INT	R/W	Oh	在转换完成时启用中断响应。 Oh = 当配置的转换完成时中断不会被置为有效 1h = 当配置的转换完成时中断会被置为有效
6	THRSLD_INT	R/W	0h	在预定义的阈值交叉上启用中断响应。 Oh = 超过阈值时中断不会被置为有效 1h = 超过阈值时中断会被置为有效
5	INT_STATE	R/W	0h	INT 中断被锁存或发出脉冲。 Oh = INT 中断被锁存,直到由对器件寻址的主器件清除 1h = INT 中断脉冲持续 10us

Copyright © 2025 Texas Instruments Incorporated

Product Folder Links: *TMAG5273*

提交文档反馈

45

表 8-11. INT CONFIG 1 寄存器字段说明 (续)

位	字段	类型	复位	说明
4-2	INT_MODE	R/W	0h	中断模式选择。 Oh = 无中断 Th = 通过 INT 实现中断 2h = 通过 INT 实现中断, I2C 总线忙时除外。 3h = 通过 SCL 实现中断 4h = 通过 SCL 实现中断, I2C 总线忙时除外。 5h = 保留
				6h = 保留 7h = 保留
1	保留	R	0h	保留
0	MASK_INTB	R/W	0h	INT 连接至 GND 时屏蔽 INT 引脚

8.1.10 MAG_GAIN_CONFIG 寄存器 (偏移 = 9h) [复位 = 0h]

表 8-12 展示了 MAG_GAIN_CONFIG。

返回到汇总表。

表 8-12. MAG_GAIN_CONFIG 寄存器字段说明

位	字段	类型	复位	说明
7-0	GAIN_VALUE	R/W		由主器件确定的 8 位增益值,用于调整霍尔轴增益。根据 MAG_GAIN_CH 和 ANGLE_EN 寄存器位的设置来选择特定轴。二进制 8 位输入会根据公式"[用户输入的十进制值]/256",被解释为 0 到 1 之间的小数值。器件会将增益值 0 解释为 1。

8.1.11 MAG_OFFSET_CONFIG_1 寄存器 (偏移 = Ah) [复位 = 0h]

表 8-13 展示了 MAG_OFFSET_CONFIG_1。

返回到汇总表。

表 8-13. MAG_OFFSET_CONFIG_1 寄存器字段说明

位	字段	类型	复位	说明
7-0	OFFSET_VALUE_1ST	R/W		由主器件确定的 8 位二进制补码偏移值,用于调整第一个轴偏移值。 可能的偏移有效输入值范围可以是 +/-128。偏移值通过将位分辨率与 输入的值相乘来计算。

8.1.12 MAG_OFFSET_CONFIG_2 寄存器 (偏移 = Bh) [复位 = 0h]

表 8-14 展示了 MAG_OFFSET_CONFIG_2。

返回到汇总表。

表 8-14. MAG_OFFSET_CONFIG_2 寄存器字段说明

位	字段	类型	复位	说明
7-0	OFFSET_VALUE_2ND	R/W		由主器件确定的 8 位二进制补码偏移值,用于调整第二个轴偏移值。可能的偏移有效输入值范围可以是 +/-128。偏移值通过将位分辨率与输入的值相乘来计算。

Product Folder Links: *TMAG5273*English Data Sheet: SLYS045

Copyright © 2025 Texas Instruments Incorporated

8.1.13 I2C_ADDRESS 寄存器 (偏移 = Ch) [复位 = 6Ah]

表 8-15 展示了 I2C_ADDRESS。

返回到汇总表。

表 8-15. I2C ADDRESS 寄存器字段说明

			_	
位	字段	类型	复位	说明
7-1	I2C_ADDRESS	R/W		7 位默认出厂 I2C 地址会在首次上电期间从 OTP 加载。如果需要新的 I2C 地址,请将这些位更改为新设置(每次下电上电时,都必须再次 写入这些位,以避免返回默认的出厂地址)。
0	I2C_ADDRESS_UPDATE _EN	R/W		启用用户定义的新 I2C 地址。 Oh = 禁用 I2C 地址更新 1h = 启用通过位 (7:1) 更新 I2C 地址

8.1.14 DEVICE_ID 寄存器 (偏移 = Dh) [复位 = xh]

DEVICE_ID 如表 8-16 所示。

返回到汇总表。

表 8-16. DEVICE_ID 寄存器字段说明

位	字段	类型	复位	说明
7-2	保留	R	xh	保留
1-0	VER	R		器件版本指示器。DEVICE_ID 的复位值取决于可订购器件型号。 0h = 保留 1h = ±40mT 和 ±80mT 范围 2h = ±133mT 和 ±266mT 范围 3h = 保留

8.1.15 MANUFACTURER_ID_LSB 寄存器 (偏移 = Eh) [复位 = 49h]

表 8-17 展示了 MANUFACTURER ID LSB。

返回到汇总表。

表 8-17. MANUFACTURER_ID_LSB 寄存器字段说明

_					
	位	字段	类型	复位	说明
	7-0	MANUFACTURER_ID_[7: 0]	R	49h	8 位唯一的制造商 ID

8.1.16 MANUFACTURER_ID_MSB 寄存器 (偏移 = Fh) [复位 = 54h]

表 8-18 展示了 MANUFACTURER ID MSB。

返回到汇总表。

表 8-18. MANUFACTURER_ID_MSB 寄存器字段说明

位	字段	类型	复位	说明
7-0	MANUFACTURER_ID_[15:8]	R	54h	8 位唯一的制造商 ID

8.1.17 T_MSB_RESULT 寄存器(偏移 = 10h)[复位 = 0h]

表 8-19 展示了 T_MSB_RESULT。

Product Folder Links: TMAG5273

返回到汇总表。

表 8-19. T_MSB_RESULT 寄存器字段说明

位	字段	类型	复位	说明
7-0	T_CH_RESULT [15:8]	R	0h	T 通道数据转换结果,MSB 8 位。

8.1.18 T_LSB_RESULT 寄存器(偏移 = 11h)[复位 = 0h]

表 8-20 展示了 T_LSB_RESULT。

返回到汇总表。

表 8-20. T_LSB_RESULT 寄存器字段说明

位	字段	类型	复位	说明
7-0	T_CH_RESULT [7:0]	R	0h	T 通道数据转换结果,LSB 8 位。

8.1.19 X_MSB_RESULT 寄存器(偏移 = 12h)[复位 = 0h]

表 8-21 展示了 X_MSB_RESULT。

返回到汇总表。

表 8-21. X_MSB_RESULT 寄存器字段说明

位	字段	类型	复位	说明
7-0	X_CH_RESULT [15:8]	R	0h	X 通道数据转换结果,MSB 8 位。

8.1.20 X_LSB_RESULT 寄存器(偏移 = 13h)[复位 = 0h]

表 8-22 展示了 X_LSB_RESULT。

返回到汇总表。

表 8-22. X_LSB_RESULT 寄存器字段说明

位	字段	类型	复位	说明
7-0	X_CH_RESULT [7:0]	R	0h	X 通道数据转换结果,LSB 8 位。

8.1.21 Y_MSB_RESULT 寄存器(偏移 = 14h)[复位 = 0h]

表 8-23 展示了 Y_MSB_RESULT。

返回到汇总表。

表 8-23. Y_MSB_RESULT 寄存器字段说明

位	字段	类型	复位	说明
7-0	Y_CH_RESULT [15:8]	R	0h	Y 通道数据转换结果,MSB 8 位。

8.1.22 Y_LSB_RESULT 寄存器(偏移 = 15h)[复位 = 0h]

表 8-24 展示了 Y_LSB_RESULT。

返回到汇总表。

Copyright © 2025 Texas Instruments Incorporated Product Folder Links: *TMAG5273*

表 8-24. Y LSB RESULT 寄存器字段说明

位	字段	类型	复位	说明
7-0	Y_CH_RESULT [7:0]	R	0h	Y 通道数据转换结果,LSB 8 位。

8.1.23 Z_MSB_RESULT 寄存器(偏移 = 16h)[复位 = 0h]

表 8-25 展示了 Z_MSB_RESULT。

返回到汇总表。

表 8-25. Z_MSB_RESULT 寄存器字段说明

位	字段	类型	复位	说明
7-0	Z_CH_RESULT [15:8]	R	0h	Z 通道数据转换结果,MSB 8 位。

8.1.24 Z_LSB_RESULT 寄存器 (偏移 = 17h) [复位 = 0h]

表 8-26 展示了 Z_LSB_RESULT。

返回到汇总表。

表 8-26. Z_LSB_RESULT 寄存器字段说明

位	字段	类型	复位	说明
7-0	Z_CH_RESULT [7:0]	R	0h	Z 通道数据转换结果, LSB 8 位。

8.1.25 CONV_STATUS 寄存器 (偏移 = 18h) [复位 = 10h]

表 8-27 展示了 CONV_STATUS。

返回到汇总表。

表 8-27. CONV_STATUS 寄存器字段说明

位	字段	类型	复位	说明
7-5	SET_COUNT	R	0h	转换数据集的滚动计数
4	POR	R/W1CP	1h	器件已上电或已经过上电复位。当主机写回"1"时,该位清零。 0h = 无 POR 1h = 发生 POR
3-2	保留	R	0h	保留
1	DIAG_STATUS	R	0h	检测到任何内部诊断失败,包括 VCC UV、内部存储器 CRC 错误、INT 引脚错误和内部时钟错误。如果 VCC < 2.3V,则忽略该位的状态。Oh = 无诊断失败1h = 检测到诊断失败
0	RESULT_STATUS	R	0h	转换数据缓冲器已准备好被读取。 0h = 转换数据未完成 1h = 转换数据已完成

8.1.26 ANGLE_RESULT_MSB 寄存器 (偏移 = 19h) [复位 = 0h]

表 8-28 展示了 ANGLE_RESULT_MSB。

Copyright © 2025 Texas Instruments Incorporated

返回到汇总表。

Product Folder Links: TMAG5273

表 8-28. ANGLE RESULT MSB 寄存器字段说明

位	字段	类型	复位	说明
7-0	ANGLE_RESULT_MSB	R		角度测量结果,单位为度。结合 ANGLE_RESULT_MSB 和 ANGLE_RESULT_LSB 位后,数据以 13 个 LSB 位的形式表示 0 至 360 度范围内的值。为角度的小数部分分配的 4 个 LSB 位,格式为 (xxxx/16)。

8.1.27 ANGLE_RESULT_LSB 寄存器 (偏移 = 1Ah) [复位 = 0h]

表 8-29 展示了 ANGLE_RESULT_LSB。

返回到汇总表。

表 8-29. ANGLE_RESULT_LSB 寄存器字段说明

位	字段	类型	复位	说明
7-0	ANGLE_RESULT_LSB	R		角度测量结果,单位为度。结合 ANGLE_RESULT_MSB 和 ANGLE_RESULT_LSB 位后,数据以 13 个 LSB 位的形式表示 0 至 360 度范围内的值。为角度的小数部分分配的 4 个 LSB 位,格式为 (xxxx/16)。

8.1.28 MAGNITUDE_RESULT 寄存器 (偏移 = 1Bh) [复位 = 0h]

表 8-30 展示了 MAGNITUDE RESULT。

返回到汇总表。

表 8-30. MAGNITUDE_RESULT 寄存器字段说明

位	字段	类型	复位	说明
7-0	MAGNITUDE_RESULT	R	0h	产生的矢量幅度(角度测量期间)结果。在360度测量期间,该值应保持恒定

8.1.29 DEVICE_STATUS 寄存器 (偏移 = 1Ch) [复位 = 10h]

表 8-31 展示了 DEVICE_STATUS。

返回到汇总表。

表 8-31. DEVICE_STATUS 寄存器字段说明

位	字段	类型	复位	说明
7-5	保留	R	0h	保留
4	INTB_RB	R	1h	指示器件从 INT 引脚读回的电平。DEVICE_STATUS 的复位值取决于上电时 INT 引脚的状态。 Oh = INT 引脚被驱动为低电平 1h = INT 引脚状态为高电平
3	OSC_ER	R/W1CP	0h	指示是否检测到振荡器错误。当主机写回"1"时,该位清零。 Oh = 未检测到振荡器错误 1h = 检测到振荡器错误
2	INT_ER	R/W1CP	0h	指示是否检测到 INT 引脚错误。当主机写回"1"时,该位清零。 0h =未检测到 INT 错误 1h = 检测到 INT 错误
1	OTP_CRC_ER	R/W1CP	0h	指示是否检测到 OTP CRC 错误。当主机写回"1"时,该位清零。 0h = 未检测到 OTP CRC 错误 1h = 检测到 OTP CRC 错误

Copyright © 2025 Texas Instruments Incorporated Product Folder Links: *TMAG5273*

表 8-31. DEVICE_STATUS 寄存器字段说明 (续)

位	字段	类型	复位	说明
0	VCC_UV_ER	R/W1CP		指示是否检测到 VCC 欠压。当主机写回"1"时,该位清零。如果 VCC < 2.3V,则忽略该位的状态。 0h = 未检测到 VCC UV 1h = 检测到 VCC UV

Product Folder Links: TMAG5273

51

English Data Sheet: SLYS045

9 器件和文档支持

9.1 文档支持

9.1.1 相关文档

请参阅以下相关文档:

- 德州仪器 (TI), HALL-ADAPTER-EVM 用户指南
- 德州仪器 (TI), TMAG5173 评估模块 用户指南
- 德州仪器 (TI), 使用多轴线性霍尔效应传感器进行角度测量 应用手册
- 德州仪器 (TI), 利用霍尔效应传感器测量旋转运动的绝对角度 应用简报
- 德州仪器 (TI), 使用霍尔效应传感器针对篡改和移动终点位置检测实现限值检测 应用简报

9.2 接收文档更新通知

要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击*通知* 进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

9.3 支持资源

TI E2E[™] 中文支持论坛是工程师的重要参考资料,可直接从专家处获得快速、经过验证的解答和设计帮助。搜索现有解答或提出自己的问题,获得所需的快速设计帮助。

链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的使用条款。

9.4 商标

TI E2E[™] is a trademark of Texas Instruments.

所有商标均为其各自所有者的财产。

9.5 静电放电警告

静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理和安装程序,可能会损坏集成电路。

ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。

9.6 术语表

TI术语表本术语表列出并解释了术语、首字母缩略词和定义。

10 修订历史记录

注:以前版本的页码可能与当前版本的页码不同

Changes from Revision A (September 2021) to Revision B (July 2024)	Page
• 更新了 <i>电气特性</i> 部分中 ICC_DCM 参数的格式	
• 更新了 <i>A1 的磁特性</i> 测试条件的格式	8
• 更新了 A2 的磁特性 测试条件的格式	9
• 更新了上电和转换时间测试条件的格式	10
• 添加了从睡眠模式转换到待机模式期间有关 INT 功能的信息	18
• 添加了以下句子:在 W&S 模式期间,结果中断功能不可用	18
• 删除了有关长数据流 CRC 支持的异常说明	21
• 删除了启用 CRC 时的异常说明	21
• 将 DEVICE_ID 寄存器复位从 1h 更改为 xh	41
_	

Copyright © 2025 Texas Instruments Incorporated Product Folder Links: *TMAG5273*

Changes from Revision * (June 2021) to Revision A (September 2021)

Page

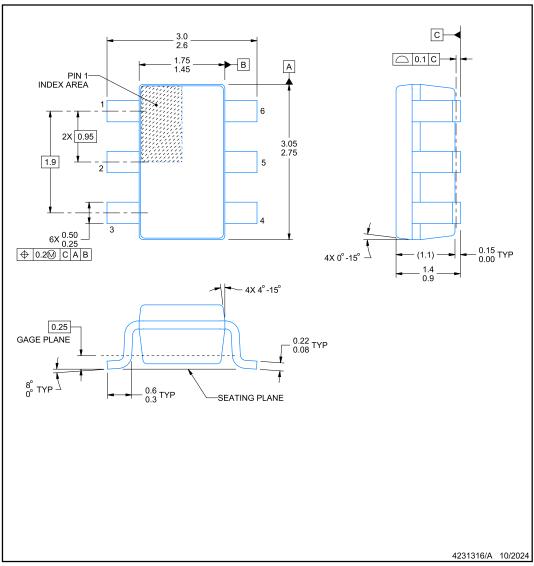
• 将数据表状态从"预告信息"更改为"量产数据"......1

11 机械、封装和可订购信息

以下页面包含机械、封装和可订购信息。这些信息是指定器件可用的最新数据。数据如有变更,恕不另行通知,且不会对此文档进行修订。有关此数据表的浏览器版本,请查阅左侧的导航栏。

Product Folder Links: *TMAG5273*English Data Sheet: SLYS045

提交文档反馈


TMAG5173xxx/TMAG5273xxx **DBV0006A-C02**

PACKAGE OUTLINE

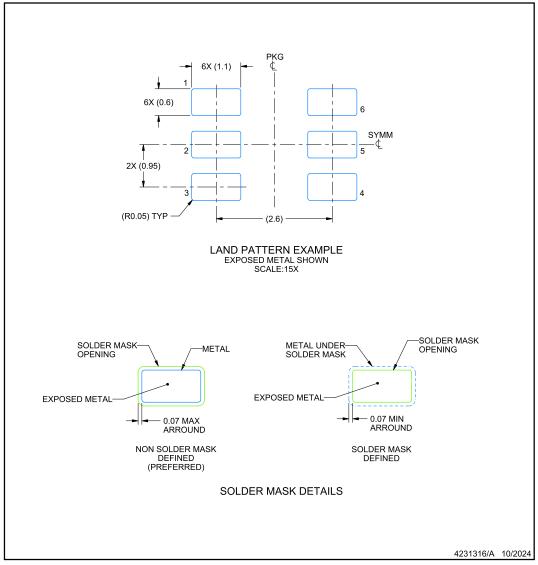
SOT-23 - 1.4 mm max height

SMALL OUTLINE TRANSISTOR

NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.
 Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.
 Reference JEDEC MO-178.

Copyright © 2025 Texas Instruments Incorporated


TMAG5173xxx/TMAG5273xxx

EXAMPLE BOARD LAYOUT

DBV0006A-C02

SOT-23 - 1.4 mm max height

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

Copyright © 2025 Texas Instruments Incorporated

提交文档反馈

55

TMAG5173xxx/TMAG5273xxx

EXAMPLE STENCIL DESIGN

DBV0006A-C02

SOT-23 - 1.4 mm max height

SMALL OUTLINE TRANSISTOR PKG 6X (1.1) 6X (0.6) SYMM 2X(0.95) (R0.05) TYP (2.6)SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL SCALE:15X

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.9. Board assembly site may have different recommendations for stencil design.

Copyright © 2025 Texas Instruments Incorporated

4231316/A 10/2024

www.ti.com 12-May-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking
•	(.,	(=/			(-)	(4)	(5)		(-)
TMAG5273A1QDBVR	Active	Production	SOT-23 (DBV) 6	3000 LARGE T&R	Yes	SN	Level-3-260C-168 HR	-40 to 125	52A1
TMAG5273A1QDBVT	Obsolete	Production	SOT-23 (DBV) 6	-	-	Call TI	Call TI	-40 to 125	52A1
TMAG5273A2QDBVR	Active	Production	SOT-23 (DBV) 6	3000 LARGE T&R	Yes	SN	Level-3-260C-168 HR	-40 to 125	52A2
TMAG5273B1QDBVR	Active	Production	SOT-23 (DBV) 6	3000 LARGE T&R	Yes	SN	Level-3-260C-168 HR	-40 to 125	52B1
TMAG5273B2QDBVR	Active	Production	SOT-23 (DBV) 6	3000 LARGE T&R	Yes	SN	Level-3-260C-168 HR	-40 to 125	52B2
TMAG5273C1QDBVR	Active	Production	SOT-23 (DBV) 6	3000 LARGE T&R	Yes	SN	Level-3-260C-168 HR	-40 to 125	52C1
TMAG5273C2QDBVR	Active	Production	SOT-23 (DBV) 6	3000 LARGE T&R	Yes	SN	Level-3-260C-168 HR	-40 to 125	52C2
TMAG5273D1QDBVR	Active	Production	SOT-23 (DBV) 6	3000 LARGE T&R	Yes	SN	Level-3-260C-168 HR	-40 to 125	52D1
TMAG5273D2QDBVR	Active	Production	SOT-23 (DBV) 6	3000 LARGE T&R	Yes	SN	Level-3-260C-168 HR	-40 to 125	52D2

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

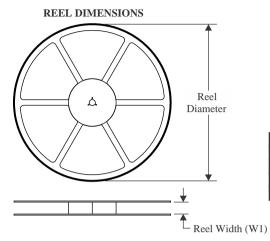
⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

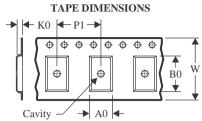
⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

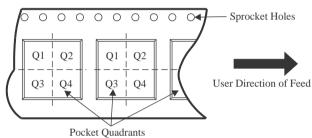
PACKAGE OPTION ADDENDUM

www.ti.com 12-May-2025


continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

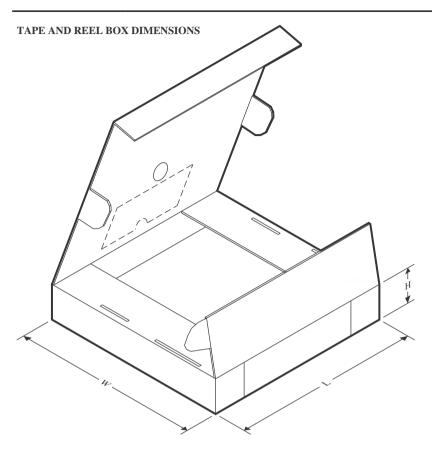

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

www.ti.com 25-Sep-2024


TAPE AND REEL INFORMATION

_	Tanana and a same and a same and a same and a same a s
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

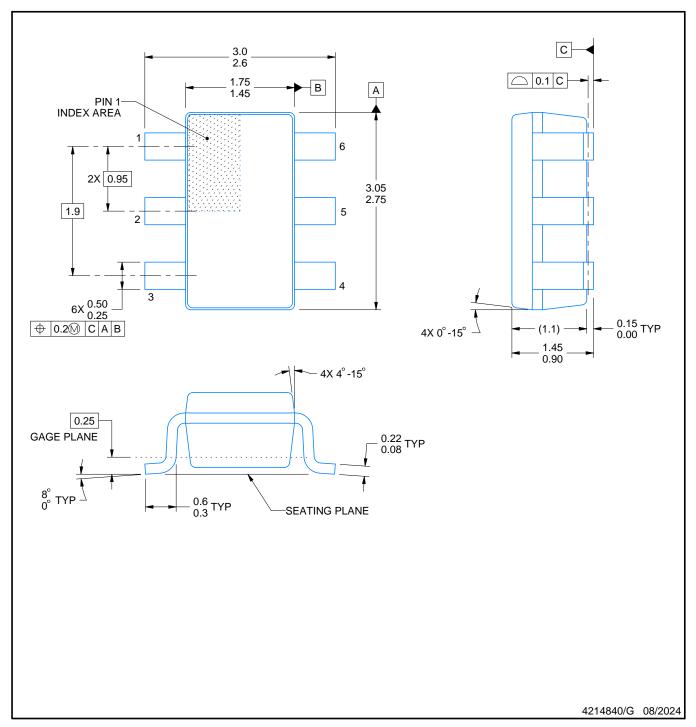
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TMAG5273A1QDBVR	SOT-23	DBV	6	3000	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3
TMAG5273A2QDBVR	SOT-23	DBV	6	3000	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3
TMAG5273B1QDBVR	SOT-23	DBV	6	3000	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3
TMAG5273B2QDBVR	SOT-23	DBV	6	3000	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3
TMAG5273C1QDBVR	SOT-23	DBV	6	3000	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3
TMAG5273C2QDBVR	SOT-23	DBV	6	3000	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3
TMAG5273D1QDBVR	SOT-23	DBV	6	3000	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3
TMAG5273D2QDBVR	SOT-23	DBV	6	3000	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3

www.ti.com 25-Sep-2024



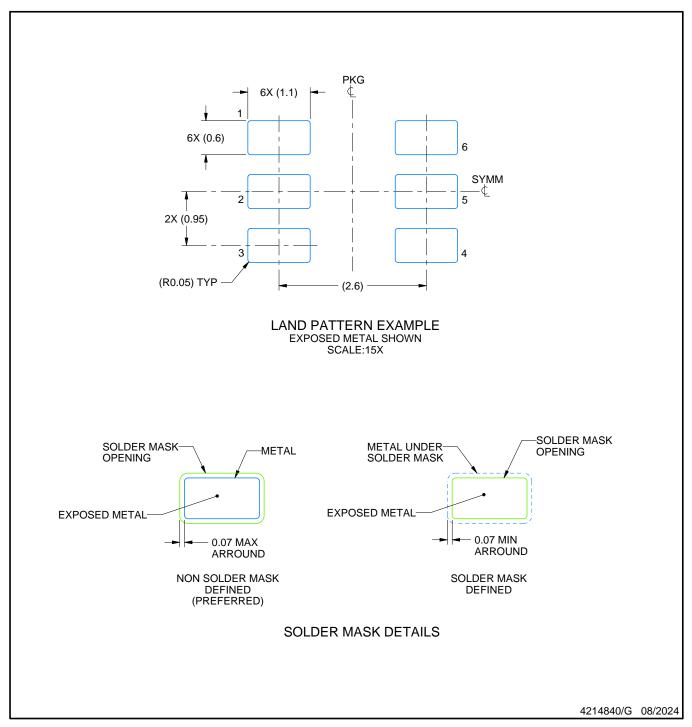
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TMAG5273A1QDBVR	SOT-23	DBV	6	3000	190.0	190.0	30.0
TMAG5273A2QDBVR	SOT-23	DBV	6	3000	190.0	190.0	30.0
TMAG5273B1QDBVR	SOT-23	DBV	6	3000	190.0	190.0	30.0
TMAG5273B2QDBVR	SOT-23	DBV	6	3000	190.0	190.0	30.0
TMAG5273C1QDBVR	SOT-23	DBV	6	3000	190.0	190.0	30.0
TMAG5273C2QDBVR	SOT-23	DBV	6	3000	190.0	190.0	30.0
TMAG5273D1QDBVR	SOT-23	DBV	6	3000	190.0	190.0	30.0
TMAG5273D2QDBVR	SOT-23	DBV	6	3000	190.0	190.0	30.0

SMALL OUTLINE TRANSISTOR

NOTES:

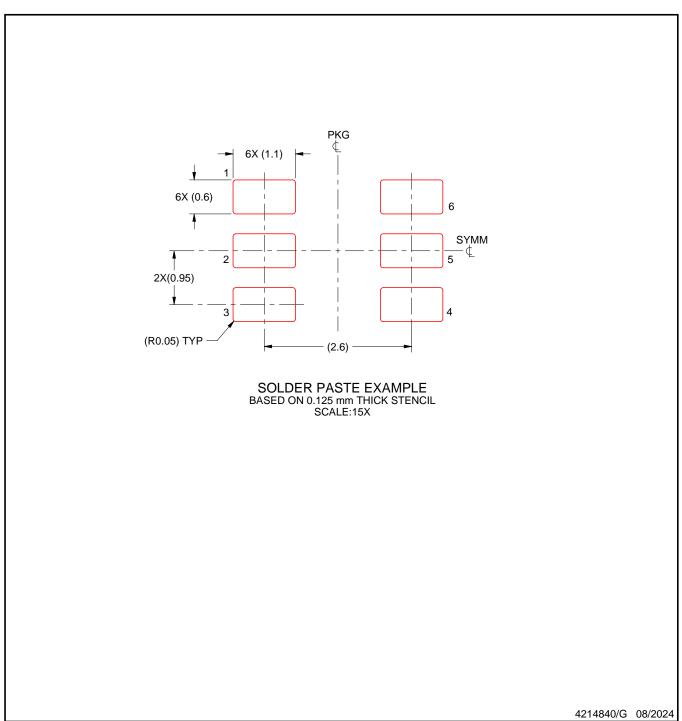
- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.


 2. This drawing is subject to change without notice.

 3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.

- 4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.
- 5. Refernce JEDEC MO-178.

SMALL OUTLINE TRANSISTOR


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

重要通知和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。 严禁以其他方式对这些资源进行复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 版权所有 © 2025,德州仪器 (TI) 公司