

零温漂、精密、低噪声、低输入偏置电流 双通道/四通道斩波运算放大器

CM4112/CM4114 数据手册

特征

■ 低失调电压: 典型值为 12.5µV

■ 极低失调电压温漂:典型值为 0.10µV/℃

■ 低输入偏置电流:最大值为 275pA

■ 低噪声密度: 典型值为 8.5nV/√Hz

■ 输入共模范围: GND + 1.5V 至 VDD - 1.5V

■ 轨到轨输出

■ CMRR: > 126dB■ PSRR: > 120dB

■ 高开环增益: > 120dB

■ 低电源电流:每放大器典型值为 940µA

■ 双电源供电: ±2.5V 至 ±18V ■ 压摆率: 典型值为 0.85V/µs ■ 增益带宽积: 典型值为 2MHz

輸入过压輸出无反相

■ 内部保护电路支持输入高于电源电压

MSOP8 3mm×3mm、SOP8 4.9mm×3.9mm 封装 (CM4112)

■ SOP14 8.7mm × 3.9mm 封装 (CM4114)

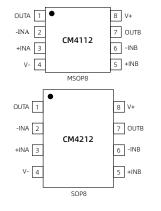
应用

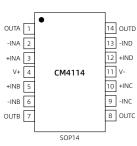
■ 传感器调理电路

热电偶 电阻式温度检测器 (RTD) 应变电桥测量

- 工业过程控制输入和输出信号调理
- 有源滤波器

概述


CM4112/CM4114 是高精度双通道/四通道放大器,采用了自稳零和斩波技术。CM4112/CM4114 具有极低的失调电压和失调电压温漂、低输入偏置电流、低噪声、低功耗等特征,能够在±2.5V 至±18V 的双电源供电情况下工作。


CM4112/CM4114 使用 1000pF 以下容性负载时无需外部补偿即可保持输出稳定。当电源电压为 36V 时,每放大器的电源电流典型值为 940μA。输入端内置 500Ω 串联电阻,不仅能对内部电路进行保护,同时使得芯片可以接受略高于电源电压的输入信号,并且保持输出不会反相。

CM4112/CM4114 的失调电压典型值仅为 12.5µV,失调电压温 漂典型值为 0.10µV/℃,噪声仅为 0.3µVpp (0.1Hz~10Hz),因而 对系统引入的误差非常小,适用于各种高精度应用。

CM4112 采用 MSOP8 表贴微小型贴装和 SOP8 表贴窄体封装, 而 CM4114 采用 SOP14 表贴窄体封装。其额定工作温度范围均 为-40℃至 125℃。

管脚配置

目录

封页	1
特征	1
应用	1
概述	1
管脚配置	1
文档历史	3
绝对最大额定值	4
电气规格	5
典型特征	7
工作原理	13
1/f 噪声	13
输入过压保护	13

输出反相	13
过载恢复时间	14
通道隔离度	14
应用	15
封装及订购信息	16
封装形式	16
产品外形图	16
MSOP8	16
SOP8	18
SOP14	19
订购信息	20

文档历史

下表列举了本文档自产品发布后的所有更新。

文档版本	修订日期	内容描述
V0.1	2024-04-16	预发布。
V0.2	2024-07-15	增加 CM4114 产品信息。
V0.3	2024-11-04	基于实验室数据更新电气规格和典型特征图。

绝对最大额定值

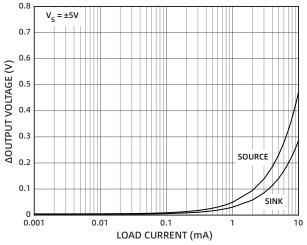
	参数	最小值	最大值	单位			
温度	温度						
工作温度		-40	125	°C			
存储温度		-65	150	°C			
结温			150	°C			
回流焊	铅锡焊接温度(10 秒到 30 秒)		240	°C			
四流泽	无铅焊接温度		260	°C			
耐压	•	·		•			
电源电压(VS+ - VS-)		36	V			
输入+INA、-INA、+INB、-INB		VS-	VS+	V			
差分输入电压			±0.7	V			
ESD							
НВМ		1000		V			
CDM		1000		V			

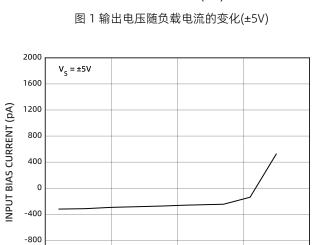
电气规格

默认测试条件: VS = ±5V、VCM = 0V、TA = 25°C。

参数	测试条件	最小值	典型值	最大值	单位
输入特征	'	<u> </u>			
生油中 正			12.5	32	μV
失调电压	TA = -40°C~125°C			±40	μV
於》位黑山法		-285	-240		рА
输入偏置电流	TA = -40°C~125°C	-330		720	рА
输入失调电流		150	180		рА
制八大 姛电流	TA = -40°C~125°C			230	рА
CMDD	VCM = -3.5V~3.5V		134		dB
CMRR	TA = -40°C~125°C	130			dB
大信号电压增益	$R_L = 2k\Omega$, $VO = -3.5V \sim 3.5V$		150		dB
失调电压温漂	TA = -40°C~125°C			0.10	µV/°C
输出特征					
最大输出电压摆幅	I _L = 1mA	-4.95		4.95	V
电源					
DCDD	VS = ±5V~±18V		125		dB
PSRR	TA = -40°C~125°C	120			dB
电源电流 (每个放大器)	VO = 0V, TA = -40°C~125°C		940	1000	μΑ
动态性能		·			
压摆率	$R_L = 2k\Omega$		0.85		V/µs
增益带宽积	VIN = 4mVpp, $C_L = 0$, $R_L = \infty$		2		MHz
噪声性能		·			
电压噪声	0.1Hz~10Hz		0.34		μVpp
电压噪声密度	1kHz	8.5		nV/√Hz	
电流噪声密度	1kHz		0.05		pA/√Hz
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	DC		-155		dB
通道隔离度	100kHz		-122		dB

默认测试条件: VS=±18V、VCM=0V、TA=25℃。

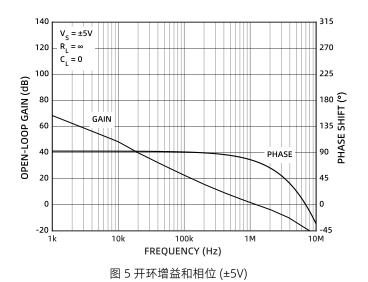

参数	测试条件	最小值	典型值	最大值	单位
输入特征	•	<u> </u>			
生 隔点压			0.2	18	μV
失调电压	TA = -40°C~125°C			±27	μV
於) <u>护</u> 军由达		-275	-250		pA
输入偏置电流	TA = -40°C~125°C	-340		2140	рА
输入失调电流			145	180	рА
制八大响 电加	TA = -40°C~125°C			300	рА
CMRR	VCM = -16.5V~16.5V		135		dB
CIMRK	TA = -40°C~125°C	126			dB
大信号电压增益	$R_L = 2k\Omega$, $VO = -16.5V \sim 16.5V$		155		dB
失调电压温漂	TA = -40°C~125°C			0.12	μV/°C
输出特征		•			
最大输出电压摆幅	I _L = 1mA	-17.95		17.95	V
短路电流			±26		mA
电源		•			
DCDD	VS = ±5V~±18V		125		dB
PSRR	TA = -40°C~125°C	120			dB
电源电流 (每个放大器)	VO = 0V, TA = -40°C~125°C		980	1000	μΑ
动态性能		•			
压摆率	$R_L = 2k\Omega$		0.85		V/µs
增益带宽积	VIN = 4mVpp, $C_L = 0$, $R_L = \infty$		2		MHz
噪声性能		•			
电压噪声	0.1Hz~10Hz		0.3		μVpp
电压噪声密度	1kHz		8.9		nV/√Hz
电流噪声密度	1kHz		0.07		pA/√Hz
) 	DC		-155		dB
通道隔离度	100kHz		-122		dB



典型特征

-1200

-50



TEMPERATURE (℃) 图 3 输入偏置电流的温度特性 (±5V)

50

100

150

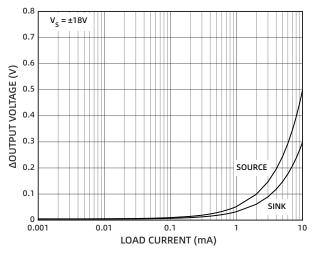


图 2 输出电压随负载电流的变化 (±18V)

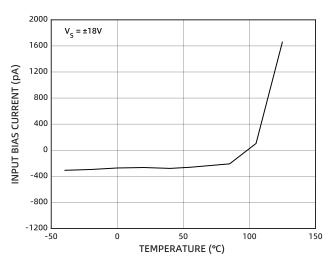


图 4 输入偏置电流的温度特性 (±18V)

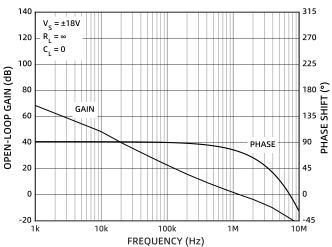


图 6 开环增益和相位 (±18V)

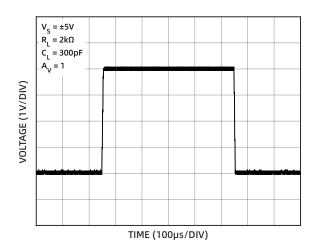


图 7 大信号瞬态响应 (±5V)

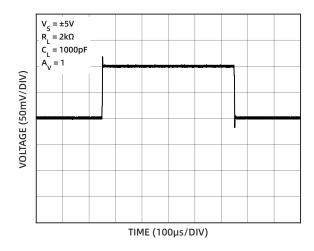


图 9 小信号瞬态响应 (±5V)

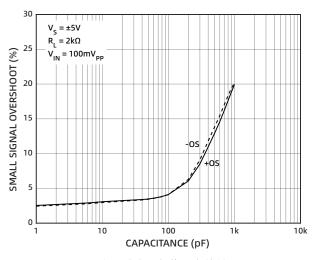


图 11 小信号过冲与负载电容的关系 (±5V)

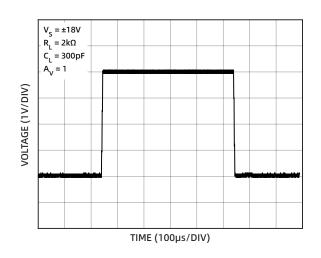


图 8 大信号瞬态响应 (±18V)

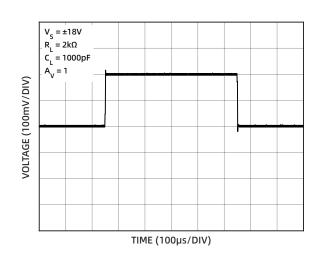


图 10 小信号瞬态响应 (±18V)

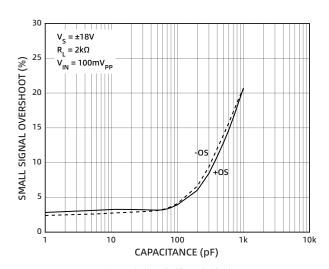


图 12 小信号过冲与负载电容的关系 (±18V)

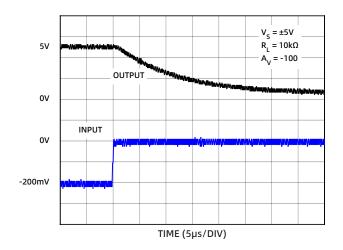


图 13 正过载恢复时间 (±5V)

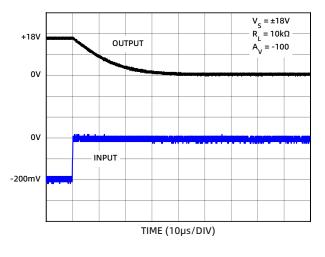


图 14 正过载恢复时间 (±18V)

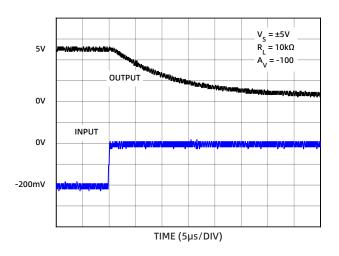


图 15 负过载恢复时间 (±5V)

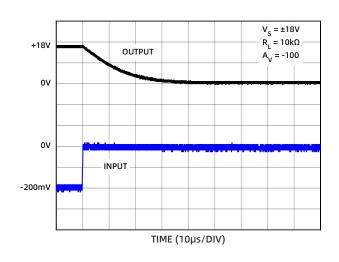
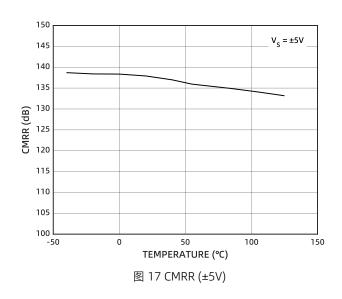
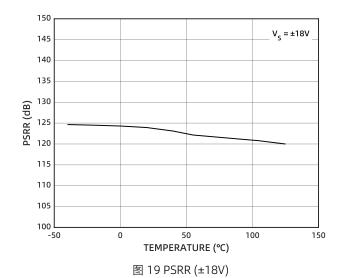




图 16 负过载恢复时间 (±18V)

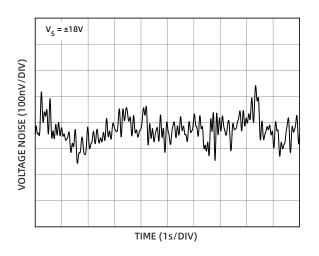


图 21 0.1Hz~10Hz 输入电压噪声 (±18V)

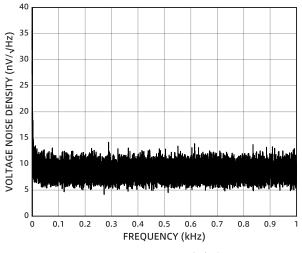


图 23 0.1Hz~10Hz 电压噪声密度 (±18V)

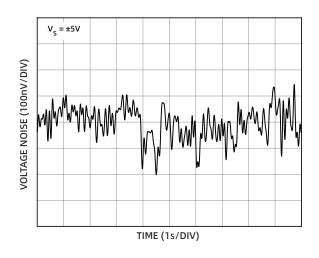


图 20 0.1Hz~10Hz 输入电压噪声 (±5V)

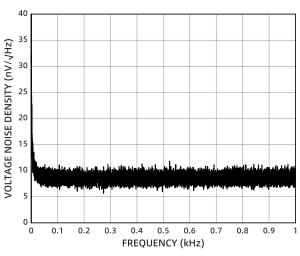


图 22 0.1Hz~10Hz 电压噪声密度 (±5V)

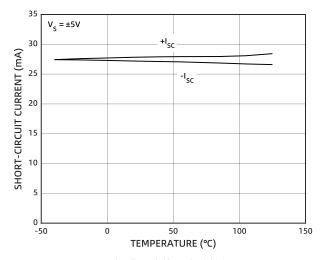


图 24 短路电流的温度特性 (±5V)

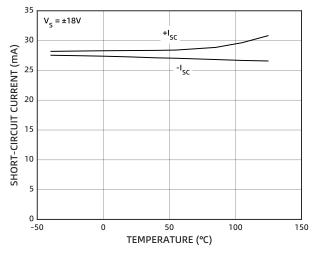


图 25 短路电流的温度特性 (±18V)

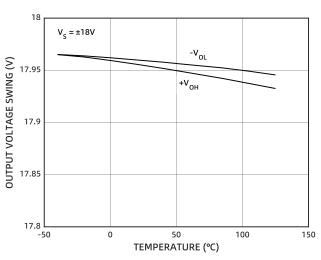


图 27 输出电压摆幅的温度特性 (±18V)

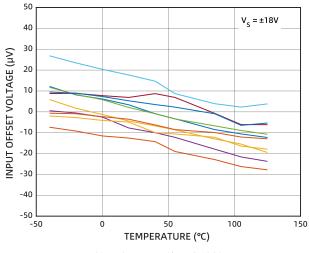


图 29 输入失调电压的温度特性 (±18V)

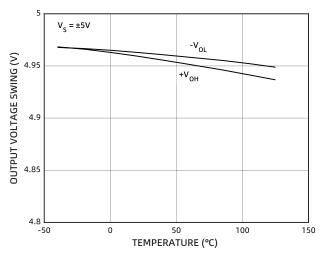


图 26 输出电压摆幅的温度特性 (±5V)

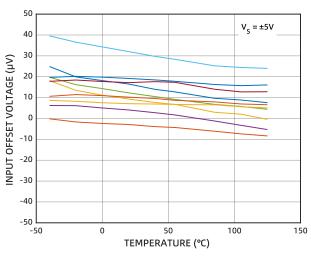


图 28 输入失调电压的温度特性 (±5V)

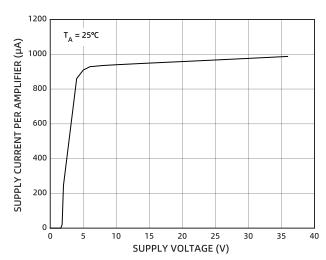


图 30 电源电流与电源电压的关系

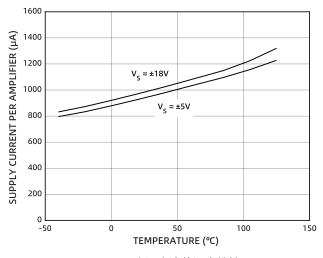


图 31 电源电流的温度特性

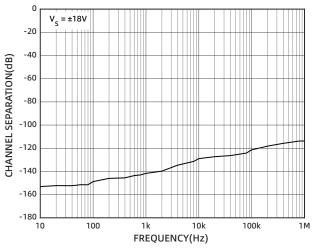


图 33 通道隔离度 (±18V)

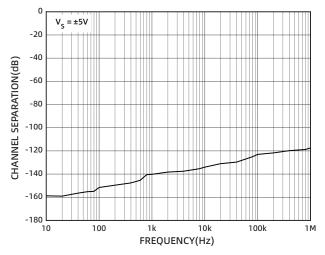
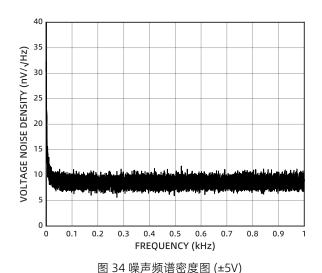


图 32 通道隔离度 (±5V)

工作原理

CM4112/CM4114 是双电源供电、超高精度、轨到轨输出运算放大器。 0.10μ V/ ℃ 的 极 小 温 漂 确 保 CM4112/CM4114在-40℃~125℃的宽环境温度范围内均具有极低的失调电压。


CM4112/CM4114 采用自稳零和斩波技术实现高精度。其独特的 拓扑结构使 CM4112/CM4114 能够在较宽的温度范围和较长的 使用寿命内保持低失调电压。同时,CM4112/CM4114 具有较低的低频噪声以及较低噪声能量,从而在不需要额外滤波的情况下最大限度地提高应用的信噪比。35kHz 的斩波频率保证了一个较宽的无噪声带宽,简化了对后续滤波器的设计要求。

CM4112/CM4114 在 0.1Hz~10kHz 的宽带宽范围内具有低噪声,可用于需要高直流精度的应用。在信号带宽为 5kHz~10kHz 的系统中,CM4112/CM4114 提供了真正的 16 位精度,是高分辨率系统的最佳选择。

1/f 噪声

1/f 噪声,也称为闪烁噪声,是直流耦合测量中误差的主要原因。1/f 噪声误差可以是几 µV 或更大,当电路的闭环增益放大时,将产生较大的输出失调电压。例如,当具有 5µVpp 1/f 噪声的放大器配置 1000 的增益时,可以输出 5mV 的失调电压误差。而 CM4112/CM4114 内部消除了 1/f 噪声,从而大大减少了输出误差。

CM4112/CM4114 的一大优势是其噪声非常低。如图 34 所示,CM4112/CM4114 在 1kHz 时的输入参考噪声密度仅为 $8.5nV/\sqrt{Hz}$ 。值得一提的是,CM4112/CM4114 的 1/f 噪声转角频率低至 0.01Hz,这能保证系统具有足够低的全带宽内积分噪声。

40 35 30 20 20 15 10 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 THEOUENCY (kHz)

图 35 噪声频谱密度图 (±18V)

输入过压保护

当输入电压超过正电源电压或负电源电压时,大多数放大器都需要外部电阻提供保护,以免遭到损坏。

CM4112/CM4114 具有内部保护电路,在任一输入端上施加的电压可以超过电源电压 2.5V,这时可以使用一个片外电阻与内部输入电阻串联。可通过以下公式计算该电阻的值:

$$\frac{\left(V_{\text{IN}} - V_{\text{S}}\right)}{R_{\text{S}} + 500\Omega} \le 5\text{mA}$$

由于 CM4112/CM4114 的输入失调电流很低,因此输入端串联一个 $5k\Omega$ 电阻所导致的输入失调电压不超过 $1\mu V$,但是电路整体噪声性能会额外增加 $9nV/\sqrt{Hz}$ 。

输出反相

反相是指放大器传递函数的极性发生改变。当在输入端上施加的电压大于最大共模电压时,许多运算放大器都会表现出反相现象。在某些情况下,反相会对放大器造成永久性损坏。在反馈环路中,反相会导致系统功能异常甚至芯片损坏。CM4112/CM4114消除了反相问题,即使输入电压高于电源电压也不会产生影响。

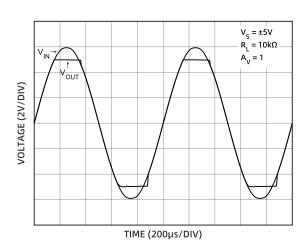


图 36 无反相 (±5V)

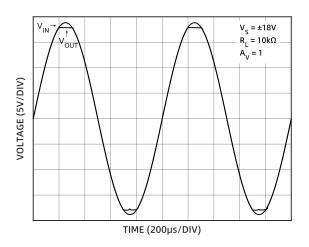


图 37 无反相 (±18V)

过载恢复时间

过载恢复时间是指放大器的输出电压从饱和状态恢复到线性响应区间所需的时间。例如对闭环增益为-100的放大器施加±200mV的输入电压时,按照传递函数输出电压为±20V,这便超出了采用±18V电源供电的CM4112/CM4114的输出电压范围,迫使输出进入饱和状态。

恢复时间对许多应用都很重要,尤其是当运算放大器必须在有较大瞬态电压的情况下放大小信号时。

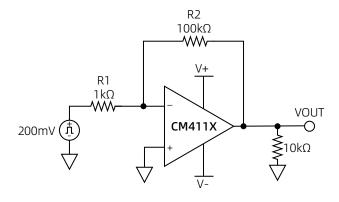


图 38 过载恢复时间的测试电路

图 13 显示了 CM4112/CM4114 的正过载恢复时间。以电源±5V为例,输出过载恢复时间为 1.2µs。

图 14 显示了 CM4112/CM4114 的正过载恢复时间。以电源 $\pm 18V$ 为例,输出过载恢复时间为 $1.2 \mu s$ 。

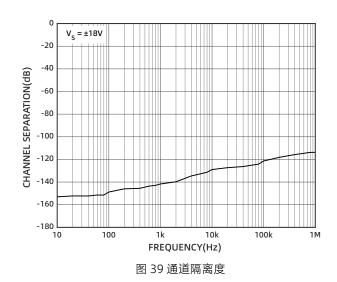
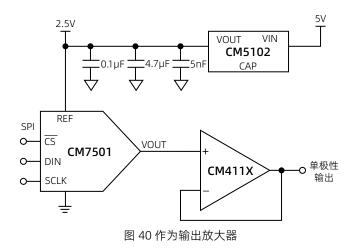

图 15 显示了 CM4112/CM4114 的负过载恢复时间。以电源±5V 为例,输出过载恢复时间为 1.2µs。

图 16 显示了 CM4112/CM4114 的负过载恢复时间。以电源 \pm 18V 为例,输出过载恢复时间为 $1.2\mu s$ 。

通道隔离度

通道隔离度是指同一个芯片上不同通道之间的串扰。

CM4112/CM4114的直流通道隔离度小于-155dB,随着频率的增加,通道隔离度仍能达到-122dB,在大多数应用中,允许两个放大器独立放大交流信号。

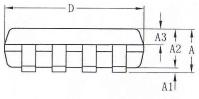


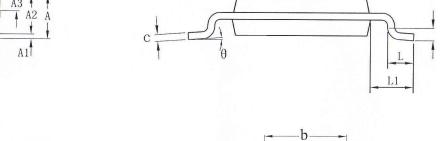
应用

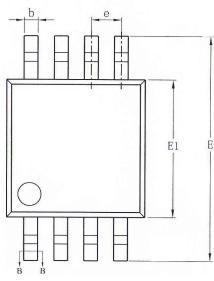
CM4112/CM4114 在单极配置时,可以作为 16 位高精度 DAC CM7501 的输出放大器。这种情况下,CM4112/CM4114 具有非常低的失调电压, CM7501 LSB 在 2.5V 基准电压下工作时为 $38\mu V$,CM4112/CM4114 典型失调电压为 $12.5\mu V$,因此不用校准输出失调电压。输入偏置电流也必须非常低,因为当它乘以 CM7501 输出阻抗(大约 $6k\Omega$)时会产生额外的 0 码误差。

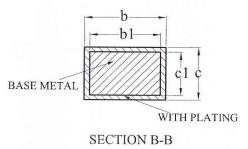
轨到轨输出提供非常小误差的满量程输出。CM7501 的输出阻抗 是恒定的且与输出码字无关,但 CM4112/CM4114 的高输入阻 抗使增益误差最小化。在这种情况下,CM4112/CM4114 的高带 宽也起到了很好的作用。CM4112/CM4114 的建立时间为 1μs, CM7501 的建立时间也为 1μs, 两者结合的建立时间大约为 1.4μs, 可以从如下公式得出:

总
$$t_s = \sqrt{(t_{s, CM7501})^2 + (t_{s, CM411X})^2}$$

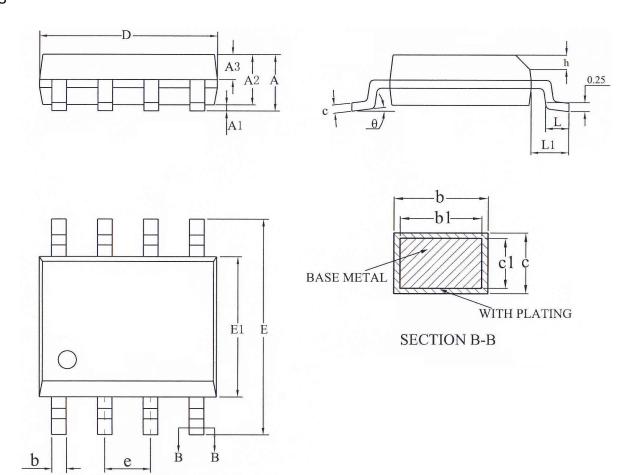

封装及订购信息


封装形式

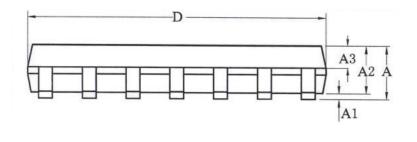

CM4112 采用 MSOP8 表贴微小型贴装和 SOP8 表贴窄体封装,而 CM4114 采用 SOP14 表贴窄体封装

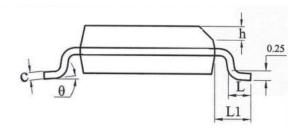

产品外形图

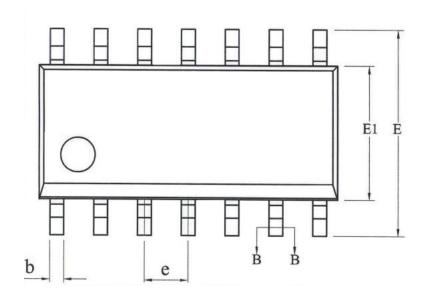
MSOP8

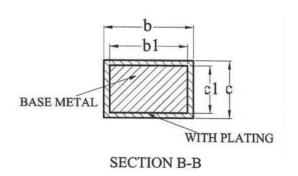

+=>n	尺寸 (毫米)			
标识	最小值	典型值	最大值	
А	-	-	1.10	
A1	0.05	0.10	0.15	
A2	0.75	0.85	0.95	
A3	0.30	0.35	0.40	
b	0.28	0.32	0.36	
С	0.15	0.17	0.19	
c1	0.14 0.15		0.16	
D	2.90	2.90 3.00		
E	4.70	4.90	5.10	
E1	2.90 3.00 3.10		3.10	
е	0.65 (BSC)			

标识	尺寸 (毫米)				
የ/አ ራፕ	最小值 最大值				
L	0.40	0.70			
L1	0.95 (REF)				
θ	0°	4°	8°		


SOP8




+= \n	尺寸 (毫米)			
标识	最小值	最大值		
А	-	-	1.75	
A1	0.10	0.17	0.23	
A2	1.30	1.40	1.50	
A3	0.60	0.65	0.70	
b	0.39	0.43	0.47	
b1	0.38	0.41	0.44	
С	0.20	0.22	0.24	
c1	0.19	0.20	0.21	
D	4.80	4.90	5.00	
E	5.80	6.00	6.20	
E1	3.80	3.90	4.00	
е	1.27 (BSC)			
h	0.25	0.38	0.50	
L	0.50	0.65	0.80	
θ	0°	4°	8°	



SOP14

+− \n	尺寸 (毫米)			
标识	最小值	最小值 典型值		
А	-	-	1.75	
A1	0.10	0.16	0.23	
A2	1.30	1.40	1.50	
A3	0.60	0.65	0.70	
b	0.39	0.43	0.47	
b1	0.38	0.41	0.44	
С	0.20	0.22	0.24	
c1	0.19	0.20	0.21	
D	8.55	8.65	8.75	
E	5.80	6.00	6.20	
E1	3.80	3.90	4.00	
е	1.27 (BSC)			
h	0.25	0.38	0.50	
L	0.50	0.65	0.80	

标识	尺寸 (毫米)				
የ/አ ራፕ	最小值 最大值				
L1	1.05 (REF)				
θ	0°	4°	8°		

订购信息

型号	温度范围	封装	包装	包装数量
CM4112-MSOTA	-40°C~125°C	MSOP8	Reel	5000
CM4112-SOPTA	-40°C~125°C	SOP8	Reel	4000
CM4114-SOPTA	-40°C~125°C	SOP14	Reel	4000