

生命体征检测模组用户手册

1 概述

EPCM001AT100 生命体征检测模组,可测量 PPG 信号以及获得血氧饱和度 Sp02、灌注指数 PI、脉率 PR 等人体参数,可以通过有线(UART)或无线(BLE5. 0)连接的方式从模组读取测量数据,可提供蓝牙通讯协议和串口通讯协议。

EPCM001AT100 模组反面图

nanochap.cn 第 1 页 共 20 页

2 特点

- **EPCM001AT100 生命体征检测模组外形尺寸:** 28mm X 39.7mm
- **输入电压:** DC5V (注:由于人体信号非常微弱,易受市电干扰,模组采用锂电池供电,USB 口仅用于为电池充电且充电期间模组将会停止工作。)
- **功耗**: 取决于主时钟、PPG 时钟等相关时钟的设置,用户如需进一步优化功耗,请与我司联系定制,联系电话 4008605922。
- 功能:可测量 PPG 信号以及获得血氧饱和度 Sp02、灌注指数 PI、脉率 PR 等。

以下为 EPCM001AT100 生命体征检测模组参数测量范围、正常参考范围和测量精度:

测量参数 测量范围 正常参考范围 测量精度 Sp02 血氧饱和度 85~100% Sp02 正常应不低于 94%, 在 94%以下为供氧不足 $\pm 2\%$ 0-20 1. 4-10 PI 灌注指数 ±1 PR 脉率 30~250bpm(次/分) 安静状态下,成人正常脉率为60~100次/分钟 ±2bpm@30~150bpm

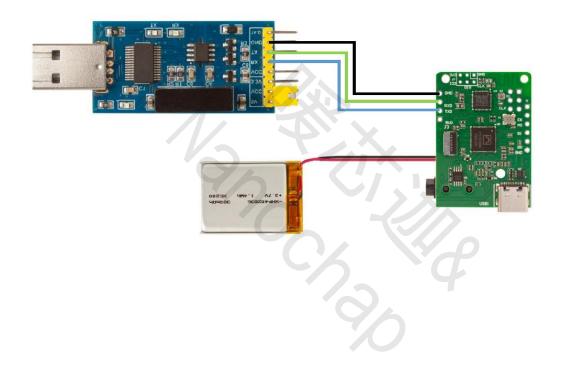
表 1 测量参数

模组通讯方式: 有线 UART; 无线蓝牙 BLE5.0。

nanochap.cn 第 2 页 共 20 页

3 应用范围

家庭医疗管理、健康智能硬件、健康管理平台、车载健康管理等。


4 测试连接

4.1 连接说明

为防止市电干扰,本模组采用锂电池供电,板载 USB 口仅作为锂电池充电使用。用户使用过程中需使用隔离串口模组进行连接,且使用途中禁止对锂电池进行充电。

4.2 连接图示

模组测试连接图示如下:

nanochap.cn 第 3 页 共 20 页

目录

1	概述1	7.2 数据命令部分(上传)10
2	特点2	7. 2. 1 开始采集命名回传10
3	应用范围3	7. 2. 2 PPG 红外光+PPG 红光(22 数据解析)
4	测试连接3	11
	4.1 连接说明3	7. 2. 3 分析结果(26 命令解析)
	4. 2 连接图示3	8 蓝牙通讯14
5	电气特性6	8.1 广播规则14
6	协议架构8	8. 2 蓝牙数据通信14
	6.1 控制命令部分8	9 接口说明15
	6.1.1 数据包结构8	10 功能框图16
	6. 1. 2 数据头类型8	11 模组尺寸17
	6. 2 回传部分8	12 测试小程序和 UART 使用18
	6. 2. 1 数据包结构8	12.1.1 测试小程序使用说明18
	6. 2. 2 数据头类型8	12.1.2 上位机使用说明18
7		13 模组控制流程图19
	7.1 控制命令部分(下发)9	14 联系方式20

文档修订记录

序号	版本号	修订日期	修订概述	修订人	审核人	批准人	备注
1	V1. 0	2024-07-08	创建文档				

5 电气特性

■ 环境要求:

环境要求	
工作环境温度	-40°C ∼ +85°C
工作环境湿度	20% ~ 80%
存储环境温度	-40°C ∼ +85°C
存储环境湿度	10% ~ 80%

■ 串口波特率: 115200 (默认)

■ 串口设置: N 8 1

■ 流控:无

■ 数据格式:二进制

符号	参数	测试条件	最小	典型	最大	单位
VIN	工作电压		3. 7	5	5. 5	٧
Ista	工作电流	+	_	_	50	mA
VIL	TX 引脚低电平输入电压	F X	_	_	0.8	V
VIH	TX 引脚高电平输入电压	-(4)	2. 8	_	3. 3	٧
VOL	RX 引脚低电平输出电压	IOL=TBD	>-x	_	0. 4	٧
VOH	RX 引脚高电平输出电压	IOL=TBD	2.9	_	3. 3	٧
tSST	系统启动时间	7/	500)	_	mS
RRVDD	VDD 上升速率	7)	TBD	_	_	V/ms
BRPON	上电波特率	-	_	115200	_	Hz

BLE 接收器特性

参数	条件	最小	典型	最大	单位
灵敏度@0.1% BER	_	_	-98	_	dBm
最大接收信号@0.1% BER	_	0	_	_	dBm
共信道 C/I	_	_	10	_	dB
	F = F0 + 1 MHz	_	-5	_	dB
	F = F0 - 1 MHz	_	-5	_	dB
邻道选择性 C/I	F = F0 + 2 MHz	_	-25	_	dB
型型处件注 0/ I	F = F0 - 2 MHz	_	-35	_	dB
	F = F0 + 3 MHz	_	-25	_	dB
	F = F0 - 3 MHz	_	−45	_	dB
	30 MHz - 2000 MHz	-10	_	_	dBm
抗带外阻塞性能	2000MHz - 2400MHz	-27	_	_	dBm
机市外阻塞住肥	2500MHz - 3000MHz	-27	_	_	dBm
	3000MHz - 12.5GHz	-10	_	_	dBm
互调性能	-/// 42	-36	_	_	dBm

BLE 发射器特性

参数	条件	最小	典型	最大	单位
射频发射功率	_		7.5	10	dBm
射频功率控制范围	_	9/9	25	_	dB
	F = F0 + 1 MHz	40	-14. 6	_	dBm
	F = F0 - 1 MHz	//	-12. 7	_	dBm
	F = F0 + 2 MHz	- /	-44. 3	_	dBm
AD 꼭 따 더 ㅋ >>>	F = F0 - 2 MHz	_	-38. 7	_	dBm
邻道发射功率	F = F0 + 3 MHz	_	-29. 2	_	dBm
	F = F0 - 3 MHz	_	-45	_	dBm
	F = F0 +> 3 MHz	_	-50	_	dBm
	F = F0 -> 3 MHz	_	-50	_	dBm
Δ f1avg	_	_	_	265	kHz
Δ f2max	_	247	_	_	dBm
Δ f2avg/Δ f1avg	_	_	-0. 92	_	dBm
ICFT	_	_	-10	_	kHz
频率漂移率	_	_	0. 7	_	kHz/50 μ
频率漂移	_	_	2		kHz

nanochap.cn 第7页共20页

6 协议架构

本协议中, 如无特别说明, 所有数值均表示十六进制格式。

6.1 控制命令部分

6.1.1 数据包结构

MSB LSB

数据头	数据功能位	校验和	数据尾
1 字节	1 字节	前面累加取后两位(1字节)	0x0D

6.1.2 数据头类型

数据头	含义
0x14	采集状态

- 不同的数据头对应不同的数据功能位,详见下一节详述。
- 相同的数据头的数据功能位赋不同值,也可实现不同的功能,详见下一节描述。

6.2 回传部分

6.2.1 数据包结构

MSB LSB

	数据头	有效载荷	校验和	数据尾
数据上传	1 字节	根据数据种类变化,不固定	前面累加取后两位(1 字节)	0x0A
命令回传	0x0A 10	收到的头+收到的命令(2字节)	前面累加取后两位(1字节)	0x0A

注意: MCU 在接收到的上位机发送的控制命令后会自动回传对应的数据包,这个数据包内包含了命令回传 专用数据头 0x0A 10 和接收到的数据头的部分,经过校验求和后将校验位数据和和数据回传专用的数据尾 0x0A 一起打包发送给上位机。

6.2.2 数据头类型

数据头	含义
0x22	PPG 红外波形+0x0D+PPG 红光波形
0x26	Heart_App 数据
0x39	模组异常

nanochap.cn 第 8 页 共 20 页

7 串口命令定义

7.1 控制命令部分(下发)

控制命令的列表如下:

数据头	数据位功能
	采集状态
0x14	0:停止采集
	1: 开始采集

例:

以 EPCM001AT100 生命体征检测模组开始采集命令为例,对下发命令进行说明,采集状态的数据功能位可设置为开始采集和停止采集。

发送示例: 14 01 15 0D

数据头	数据功能位	校验和	数据尾
14	01	15	0x0D

- 14表示要对采集状态进行设置。
- 01 表示开始采集。
- 15 为校验和,校验和: 0x15 = (0x14 + 0x01) & 0xff。
- 0D 为数据尾。

7.2 数据命令部分(上传)

	数据头	有效载荷	校验和	数据尾
命令回传	0A 10	14 01	2F	0x0A

7.2.1 开始采集命名回传

命令回传示例: 0A 10 14 01 2F 0A 用来告诉 MCU 开始采集。

- 0A 10 是数据回传的数据头。
- 14 01 是接收到的头。
- 2F 校验和, 校验和: 0x2F = (0x0A + 0x10 + 0x14 + 0x01) & 0xff。
- 0A 是回传数据的数据尾。

数据回传

数据头	数据位(数据位(说明)			数据尾
0x22	PPG 红外沟	PPG 红外波形+0x0D+PPG 红光波形			
	PR	= /	脉率		
	SP02	=	血氧饱和度		
	PI	=	灌注指数	前面累加取后两位	
	31 30 30	31 30 30: 外接电极脱落			0x0a
30: 外接电极正常					
0.00	31: 模组	充电中			
0x39	32: 模组	32: 模组未充电			
	33: 锂电	池电量低	也量低		
	34: 锂电	池电量正	常		

例:

以 EPCM001AT100 生命体征检测模组开始采集命令为例,对上传数据解析进行说明。当开始采集命令下发后,模组自动上传数据,第一条为命名回传数据,紧接着为该模式下的采集数据。

	数据头	有效载荷	校验和	数据尾
命令回传	0A 10	14 01	2F	0×0A
数据上传 PPG 红外光+PPG 红光	22	31 32 37 32 35 39 31 35 0D 31 33 33 39 32 30 35 38	6E	0x0A
数据上传(分析结果)	26	50 52 3D 39 32	70	OA

nanochap.cn 第 10 页 共 20 页

7. 2. 2 PPG 红外光+PPG 红光 (22 数据解析)

7. 2. 2. 1 PPG 红外光数据+PPG 红光数据 的 AD 采样值解析

数据回传示例: 22 31 32 37 32 35 39 31 35 0D 31 33 33 39 32 30 35 38 6E 0A 返回 PPG 红外光数据和 PPG 红光的测量值。

- 22 是数据回传的数据头。
- 31 32 37 32 35 39 31 35 是 PPG 红外光波形数据,将 16 进制转换成 ASCII 码,对应的 ASCII 码 为 12725915。
- 31 33 33 39 32 30 35 38 是 PPG 红光波形数据,将 16 进制转换成 ASCII 码,对应的 ASCII 码为 13392058。
- 6E 是校验和, 校验和: 0x6E = (0x22 + 0x31 + 0x32 + 0x37 + 0x32 + 0x35 + 0x39 + 0x31 + 0x35 + 0x0D + 0x31 + 0x33 + 0x33 + 0x39 + 0x32 + 0x30 + 0x35 + 0x38) & 0xFF。
- 0A 是回传数据的数据尾。

ASCII 码对照表

16 进制 HEX	符号 Symbol			
30	0			
31	1			
32	2			
33	3			
34	4			
35	5			
36	6			
37	7			
38	8			
39	9			

nanochap.cn 第 11 页 共 20 页

7. 2. 2. 2 PPG 红外光数据和红光数据的 AD 采样值单位换算成 mV

模组上传的为 AD 采样值,需要转换为单位为 mV 的数值。

计算公式如下:

$$value = (ad - dRef) * factor$$

其中,

- ad 为模组上传的 AD 采样值,如 12725915。
- dRef 为参考值,dRef = 2²³。
- factor 为转换系数,

$$factor = \ \frac{1000*1.024}{2^{23}}$$

■ 则转换结果为:

value =
$$(12725915 - 2^{23}) * \frac{1000 * 1.024}{2^{23}} = 529.4564 \text{mV}$$

横坐标单位换算成 s

模组的采样率为 100Hz, 可将采样点数转化为时间。

7.2.3 分析结果 (26 命令解析)

命令回传示例: 26 48 52 3D 39 32 70 0A 返回的一个 PR 心率计算值。

- 26 是数据回传的数据头。
- 50 52 3D 39 32 是接收到的计算结果数据,对应的 ASCII 码为 PR=92。
- 70 校验和, 校验和: 0x70 = (0x26 + 0x50 + 0x52 + 0x3D + 0x39 + 0x32) & 0xFF。
- 0A 是回传数据的数据尾。

ASCII 码对照表

16 进制 HEX		符号 Symbol
50		Р
52	Λ.	R
3D		=
39		9
32		2

nanochap.cn 第 13 页 共 20 页

8 蓝牙通讯

8.1 广播规则

广播规则定义如下:

- 从机正常广播时间间隔设置为 1.25s。
- 从机有充电功能时, 充电状态广播时间间隔设置为 62.5ms。
- 蓝牙服务。

在设计中蓝牙服务使用的自定义属性如下:

类型	UUID	权限
Service	a6ed0201-d344-460a-8075-b9e8ec90d71b	/
Characteristic	a6ed0202-d344-460a-8075-b9e8ec90d71b	Notify
Characteristic	a6ed0203-d344-460a-8075-b9e8ec90d71b	Write

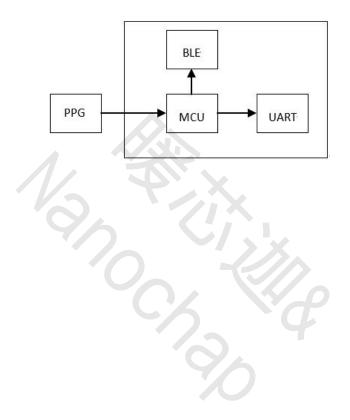
蓝牙广播名为 ECP01Module。


8.2 蓝牙数据通信

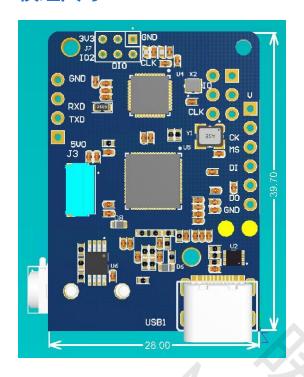
主机和从机处于连接状态时,双方进入数据通信模式,通讯协议同串口命令(请详见第 10 页的 6 串口命令定义)。

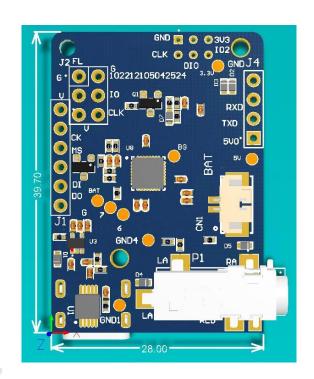
nanochap.cn 第 14 页 共 20 页

9 接口说明



J4 管脚序号(从上到下)	信号名称	信号类型	备注		
1	GND	1N	接外部模组的电源地		
2	RXD	IN	接外部模组的串口发送信号		
3	TXD	OUT	接外部模组的串口接收信号		
4	VBAT	IN	模组供电管脚,5V输入		
J3		类型	备注		
10 芯 FPC 插座 10		FPC 排线	连接透射式血氧夹		
USB1	连接类		备注		
USB 插座	座		为锂电池充电		
BAT	连接类型		备注		
电池插座	连接钱	里电池	为模组供电		


nanochap.cn 第 15 页 共 20 页


10 功能框图

nanochap.cn 第 16 页 共 20 页

11 模组尺寸

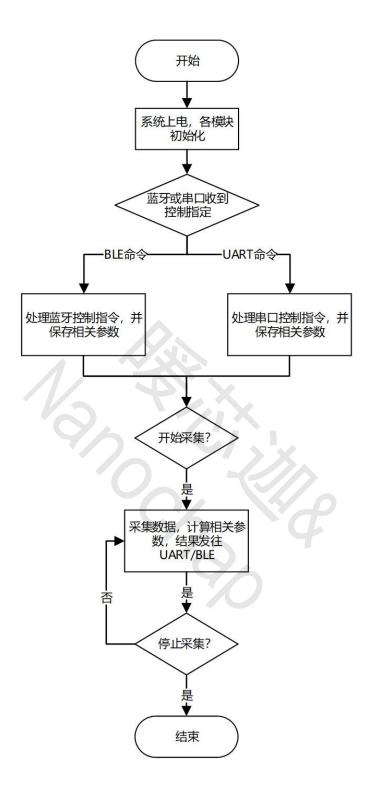
模组具体尺寸如上图所示,单位均为毫米,模组有3个直径2.2mm的固定孔。

nanochap.cn 第 17 页 共 20 页

12 测试小程序和 UART 使用

12.1.1 测试小程序使用说明

测试小程序请访问杭州暖芯迦电子科技有限公司微信公众号,使用方法见《NNCEPCM001AR100&BR100&AT100模组小程序用户手册 A0》。


12.1.2 上位机使用说明

上位机使用方法见《NNCEPCM001AR100&BR100&AT100 模组软件用户手册 A0》。

nanochap.cn 第 18 页 共 20 页

13 模组控制流程图

nanochap.cn 第 19 页 共 20 页

14 联系方式

可通过以下方式了解更多产品详情:

1) 公司电话: 4008605922; 180 9470 6680

2) 技术人员 QQ: 1708154204

3) 公众号: 暖芯迦电子

4) 扫描二维码进入测试小程序查看数据

Copyright© 2024 by Hangzhou Nanochap Electronics Co., Ltd.

使用指南中所出现的信息在出版当时相信是正确的,然而暖芯迦对于说明书的使用不负任何责任。文中提到的应用目的仅仅是用来做说明,暖芯迦不保证或表示这些没有进一步修改的应用将是适当的,暖芯 迦拥有不事先通知而修改产品的权利,对于最新的信息,请参考我们的网址 https://www.nanochap.cn或与我们直接联系(4008605922)。

nanochap.cn 第 20 页 共 20 页