

Product Specification

GT712

Hall Current Sensor

Description

GT712 is a high-performance Hall effect current sensor that can more effectively measure AC (alternating current) or DC (direct current) current, and is widely used in industrial, consumer, and communication equipment.

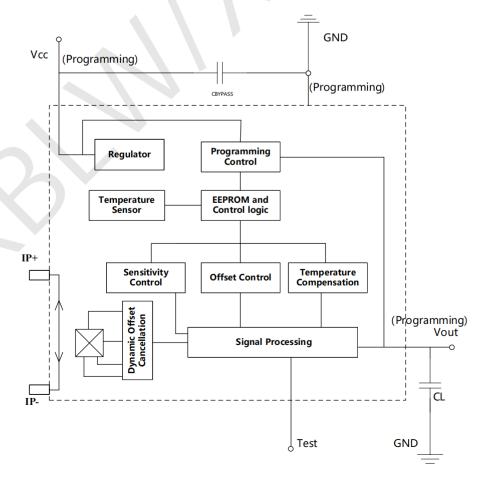
The GT712 series internally integrates a highly accurate and low-noise linear Hall circuit and a low-impedance main current loop conductor. When the sampled current flows through the main current loop, the magnetic field it generates induces a corresponding electrical signal on the Hall circuit, which is then processed by the signal processing circuit to output a voltage signal, making the product output strictly proportional to the measured current value.

The linear Hall circuit is manufactured using advanced BCDMOS process, which includes a high sensitivity Hall sensor, a preamplifier for the Hall signal, a high precision Hall temperature compensation unit, an oscillator, a dynamic offset elimination circuit, and an output module for the amplifier. In the absence of a magnetic field, the static output of the current sensor is 50% VCC. Under a power supply voltage of 5V, the sensor's static output can linearly change between 0.2~4.8V with the magnetic field, with a linearity of up to 0.4%.

The dynamic offset elimination circuit integrated inside the GT712 ensures that the sensitivity of the sensor is not affected by external pressure and IC packaging stress. The GT712 is available in SOP8 package, with an operating temperature range of -40 \sim 150°C, and complies with RoHS standards.

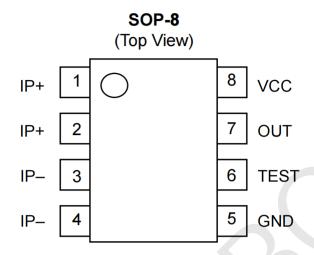
Feature

- ➤ Working voltage: 4.5V~5.5V
- > Static common mode output point: 50% Vcc
- ➤ Wide measuring range: 5A/20A/30A
- ➤ Isolation voltage: 2500V
- High bandwidth: 120kHz
- Output response time: 4μs (typical value)
- Stability within operating range: 1.5% @ 25° C ~ 150° C; 1% @ -40° C ~ 25° C
- ➤ Low-noise analog signal path
- Strong anti-interference ability
- Strong resistance to mechanical stress, magnetic field parametersStrong resistance to mechanical stress, magnetic field parameters are not shifted by external pressure
- ➤ ESD (HBM): 5kV
- \triangleright Operating temperature: -40 °C ~ 150 °C
- RoHS certified: (EU) 2015 / 863
- Proportional output, bidirectional current


Applications

- > Inverter current detection
- ➤ Motor phase current detection (motor control)
- Photovoltaic inverter
- Battery Load Testing System
- Current Transformer
- Switching Power Supply
- Overload Protection Device

Ordering Information


Product Model	Package Type	Marking	Packing	Packing Qty	Sensitivity
		GT712LB			
GT712LBDTR-05B	SOP-8	05B XXX	Tape	3000PCS/Reel	185mV/A
		XBLW			
		GT712LB			
GT712LBDTR-20A	SOP-8	20A XXX	Tape	3000PCS/Reel	100mV/A
		XBLW			
		GT712LB			
GT712LBDTR-30A	SOP-8	30A XXX	Tape	3000PCS/Reel	66.7mV/A
		XBLW		,	

Functional Block Diagra

Pin Configurations

Pin Description

Name	Number	Function	Name	Number	Function
IP+	1	positive current input terminal	GND	5	Ground/Programming Pin
IP+	2	positive current input terminal	TEST	6	Factory Testing/Floating
IP-	3	negative current input terminal	OUT	7	Signal Output/Programming Pin
IP-	4	negative current input terminal	VCC	8	Power Supply/Programming Pin

Absolute Maximum Ratings

Using the device beyond its limiting parameters may cause instability of the chip's functions, and prolonged exposure to such conditions may damage the chip.

Symbol	Parameter	Min	Max	Unit
Vcc	Power supply voltage	-	6	V
Vout	Output voltage	-	VCC-0.5	v
Iouт (source)	Output current source	-	80	mA
Iout (sink)	Output current sink		40	mA
Та	Working Environment Temperature	-40	150	°C
Ts	Storage Temperature	-65	170	°C
Tı	Maximum Junction Temperature	-	165	°C
Endurance	EEPROM Programming cycle number	200	-	cycle
Transient surge current at current sampling terminal	IP1pulse100ms		100	A

Electrostatic Discharge (ESD) Parameters

Symbol		Execution Standard	Max	Unit	
Vesd	Human Body Model (HBM)	JEDECJS-001-2017	5	kV	

Electrical Parameters

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
Vcc	Operating voltage	-	4.5	5	5.5	V
Icc	Operating current	TA=25℃, Output No Load	9	11.18	13	mA
BW	Built-in bandwidth	Smallsignal: −3dB, CL=1nF, TA=25°C	-	120	-	KHz
ТРО	Power-on time	TA=25°C, CL=1nF, Sensitivity 2mV/G, Constant Magnetic Field: 400Gs		100		us
TTC	Temperature- compensated power-on time	TA=150°C, CL=1nF, Sensitivity 2mV/G, Constant Magnetic Field: 400Gs		300	-	us
VUVLOH	Undervoltage lockout	TA=25°C, Voltage rises, Device starts operating.		4.1		V
VUVLOL	threshold	TA=25℃, Voltage drops, Device stops operating.		3.8		V
VPORH	Reset voltage	TA=25°C, VCC rises.	-	4.1	-	V
VPORL		TA=25°C, VCC drops.	-	3.8	-	V
tPORR	Power-on reset release time	TA=25℃, VCC rises.	-	10	-	us
ISCLP	Maximum current source			80		mA
Iscln	Maximum sink current	-	-	40	-	mA
Vol	Analog output saturation low level	RL>=4.7KΩ		0.5		V
Voh	Analog output saturation high level	RL>=4.7KΩ	VCC-0.3	-	4.97	V

CL	Output load capacitance	VOUT to GND	-	0.5	1	nF
	Output load resistance	VOUT to GND		10	-	ΚΩ
RL	,	VOUT to VCC		10		ΚΩ
Rout	Output resistance	-		9		Ω
tr	Rise time	TA=25°C, constant magnetic field 400Gs, CL=1nF, sensitivity 2mV/Gs.	-	5.5	1	us
TPD	Transmission delay	TA=25°C, constant magnetic field 400Gs, CL=1nF, sensitivity 2mV/Gs.		4.5		us
TRESP	Response time	TA=25°C, constant magnetic field 400Gs, CL=1nF, sensitivity 2mV/Gs.		4	5	us
VN	Noise	TA=25°C, CL=1nF, sensitivity 2mV/Gs, BWf=Bwi.	-	14.1	-	mVp-p
RP	Main Current End Resistance			1.5	1.8	mΩ
Elin	Linear Error	TA=25°C, CL=1nF, sensitivity 2mV/Gs, BWf=Bwi.	-	0.4		%
Voq	Quiescent Point	TA=25°C, CL=1nF, sensitivity 2mV/Gs, BWf=Bwi.	2.485	2.500	2.515	V

Accuracy Parameter

GT712LBDTR-05B

Parameter	Symbol	Condition	Min	Тур	Max	Unit
current range	IP			±5		A
Zero Current Output Temperature Coefficient	ΔVOUT(Q)			0.26		mV/℃
Total Output Error	ETOT		-3.0		3.0	%
Output Noise	VNOISE(PP)			46		mV
Sensitivity	Sens	Full Current Range	180	185	190	mV/A
Sensitivity Temperature Coefficient	ΔSens	TA=150°C, TA=-40°C relative to 25°C		0		%/°C

GT712LBDTR-20A

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Current Range	IP		-20		20	A
Zero Current Output Temperature Coefficient	ΔVOUT(Q)			0.26		mV/°C
Total Output Error	ЕТОТ		-3.0		3.0	%
Output Noise	VNOISE(PP)			30		mV
Sensitivity	Sens	Full Current Range	96	100	104	mV/A
Sensitivity Temperature Coefficient	ΔSens	TA=150°C, TA=-40°C relative to 25°C		0		%/°C

GT712LBDTR-30A

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Current Range	IP		-30		30	A
Zero Current Output Temperature Coefficient	ΔVOUT(Q)			0.26		mV/°C
Total Output Error	ЕТОТ		-3.0		3.0	%
Sensitivity	Sens	Full Current Range	64	66.6	69	mV/A
Thermal coefficient of sensitivity	ΔSens	TA=150°C, TA=-40°C, relative to 25°C		0		%/°C
Output Noise	VNOISE(PP)			20		mV

Feature Definition

1.Power-on Time - TPO

Power-on time: The time taken for the power supply to reach the Power-on time: The time taken for the power supply to reach the minimum operating voltage VCCM IN is t1; the time taken for the output to reach 90% of its steady value under an external magnetic field is t2. The difference between these two times is the power-on time.

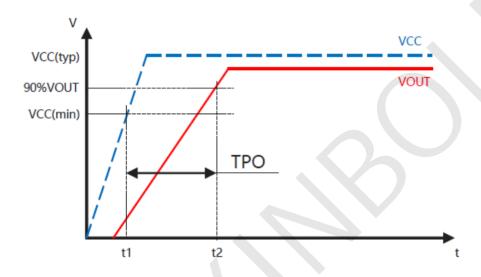


Figure 1: Definition of Power-on Time

2.Temperature Compensated Power-on Time - TTC

After power-on, temperature trimming time is required before valid temperature compensation output.

3. Transmission Delay - TPD

The time difference between the output reaching 20% of its final value when the external magnetic field reaches 20% of its final value.

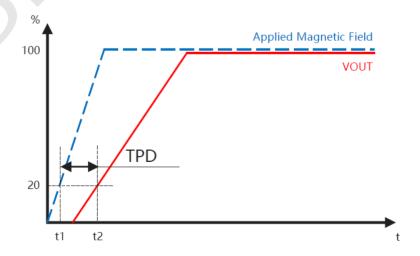


Figure 2: Definition of transmission delay

4.Rise time - TR

The time difference between the rise of the chip output level from 10% to 90%.

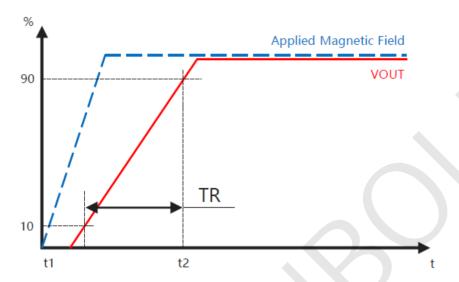


Figure 3: Definition of Rise Time

5. Response Time - TRESP

The time difference between when the external magnetic field applied to the chip reaches 80% of its final value and when the corresponding output value also reaches 80%.

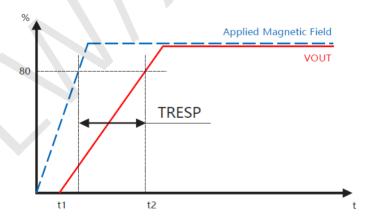


Figure 4 : Definition of Response Time

6. Static Voltage Output - VOQ

When the power supply voltage and ambient temperature of the chip are within the working range and the measured current is 0, the output of the chip.

Note: Prolonged operation at the maximum rated value may affect the reliability of the device. Exceeding the maximum rated value may damage the device.

7. Static Voltage Output Error - VOE

The difference between the actual output voltage of the sensor and the ideal output voltage power supply when the measured current value is zero. In proportional output mode with power supply, the static voltage output error is the difference between the actual output error and VCC / 2.

8. Sensitivity

Sensitivity indicates the change value of sensor output per 1A change of measured current, with the unit of mV/A. The calculation method is to pass through the positive full-scale current and negative full-scale current, and divide the difference between the output voltage at 2 points of the sensor by the difference between the positive full-scale current and negative full-scale current, which is the sensitivity of the sensor. The specific calculation formula is as follows:

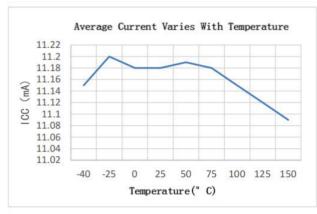
SENS = (Vout(IPma0) - Vout(Inma0))/(IPma0 - Inma0)

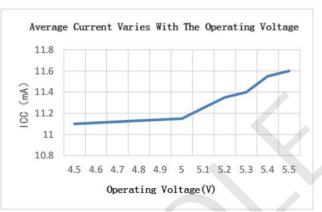
Here, IPma0 and Inma0 are the positive full-scale current and negative full-scale current respectively, Vout(IPma0) and Vout(Inma0) are the analog output voltages of the sensor when passing through the positive full-scale current and negative full-scale current respectively.

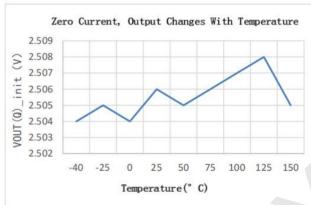
9. Global Error Budget - ETOT

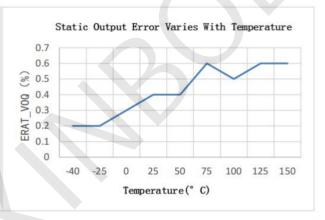
This error value represents the maximum error of the sensor under various environmental conditions, which is equal to the absolute value of the measurement error within each temperature range, divided by the maximum output dynamic range of the sensor, over the full current measurement range. It can be expressed as follows:

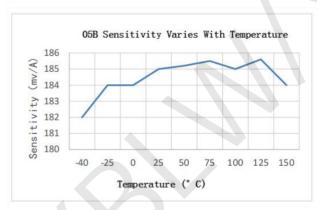
ETOT(IP)=Ma0(Vout -Vout_idea)/(Vout(IPma0)-Voq)

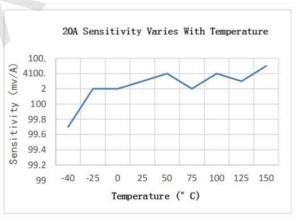

Here, Ma0 (Vout – Vout _ idea) represents the maximum error within the measurementHere, Ma0 (Vout – Vout _ idea) represents the maximum error within the measurement range and (Vout (IPma0) -Voq) represents the maximum output dynamic range of the sensor.


10. Non-linearity error - ELIN

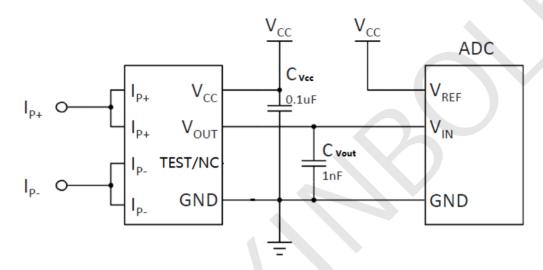

Due to the non-ideal characteristics of the sensor, the output voltageDue to the non-ideal characteristics of the sensor, the output voltage is not completely linear with the measured current in practical applications. After linear fitting by least squares method, the linearity error of the sensor can be obtained by dividing the maximum output error of the sensor by its dynamic range, i.e. ELIN (IP) = Δ Vout / (Vout (IPma0) -Voq). Here, Δ Vout is the maximum linearity error within the measuring range of the sensor.

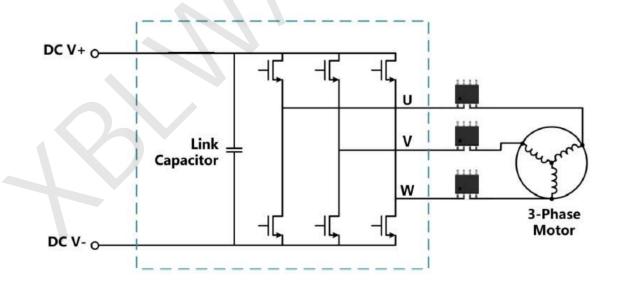



Characteristic Curve









Typical Application Circuit

The typical application circuit of GT712 includes a filter capacitor CVcc between VCC and ground, as well as an optional filter capacitor CVout between the output and ground. At the input end of the measured current, pins 1 and 2 are shorted together to serve as the input end of the measured current, while pins 3 and 4 are shorted together to serve as the output end of the measured current. The analog output signal of the sensor is perfectly proportional to the AC/DC current being measured.

Typical application circuit

3-Phase Motor Control Application Circuit

Package Information

• SOP-8

Size	Dimensions In	Millimeters	Size		In Inches
Symbol	Min(mm)	Max(mm)	Symbol	Min(in)	Max(in)
A	1. 350	1. 750	A	0.053	0. 069
A1	0.100	0. 250	A1	0.004	0. 010
A2	1.350	1. 550	A2	0.053	0.061
b	0.330	0. 510	b	0.013	0. 020
С	0. 170	0. 250	С	0.006	0.010
D	4. 700	5. 100	D	0. 185	0.200
E	3. 800	4.000	E	0. 150	0. 157
		4,000		0, 100	0.157
E1	5. 800	6. 200	E1	0. 228	0. 224
е		70 (BSC)	е		050 (BSC)
L	0.400	1. 270 8°	L	0.016	0.050 8°
θ	0°	8°	θ	0°	8°
B1		e			

Statement:

- XBLW reserves the right to modify the product manual without prior notice! Before placing an order, customers need to confirm whether the obtained information is the latest version and verify the completeness of the relevant information.
- Any semi-guide product is subject to failure or malfunction under specified conditions. It is the buyer's responsibility to comply with safety standards when using XBLW products for system design and whole machine manufacturing. And take the appropriate safety measures to avoid the potential in the risk of loss of personal injury or loss of property situation!
- XBLW products have not been licensed for life support, military, and aerospace applications, and therefore XBLW is not responsible for any consequences arising from the use of this product in these areas.
- If any or all XBLW products (including technical data, services) described or contained in this document are subject to any applicable local export control laws and regulations, they may not be exported without an export license from the relevant authorities in accordance with such laws.
- The specifications of any and all XBLW products described or contained in this document specify the performance, characteristics, and functionality of said products in their standalone state, but do not guarantee the performance, characteristics, and functionality of said products installed in Customer's products or equipment. In order to verify symptoms and conditions that cannot be evaluated in a standalone device, the Customer should ultimately evaluate and test the device installed in the Customer's product device.
- XBLW documentation is only allowed to be copied without any alteration of the content and with the relevant authorization. XBLW assumes no responsibility or liability for altered documents.
- XBLW is committed to becoming the preferred semiconductor brand for customers, and XBLW will strive to provide customers with better performance and better quality products.