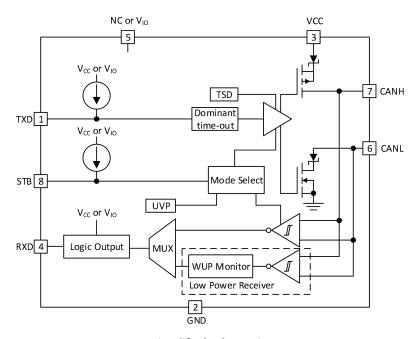


1.Features

- Meets the requirements of ISO 11898-2:2016 physical layer standard
- Support of classical CAN and optimized CAN FD
- HMT1044 I/O voltage range supports 2.2V to 5.5V
- Support for 12V and 24V battery applications
- Receiver common mode input voltage: ±30V
- Bus fault protection: ±70 V
- Undervoltage protection
- TXD-dominant time-out (DTO)
- Thermal-shutdown protection
- Low power standby mode supporting remote wake-up request
- SOP8 package and DFN3x3 package

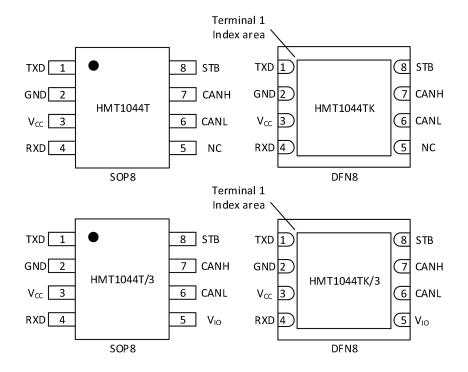
2.Applications


- Automotive and transportation
- Body control modules
- Automotive gateway
- Advanced driver assistance system (ADAS)

3 Description

The HMT1044 is high speed controller area network (CAN) transceiver that meets the physical layer requirements of the ISO 11898-2:2016 high-speed CAN specification.

The transceivers have certified electromagnetic compatibility (EMC) operation making it an ideal choice for classical CAN and CAN FD networks up to 5 megabits per second (Mbps). The HMT1044 includes internal logic level translation via the $V_{\rm IO}$ pin to allow for interfacing the transceiver I/O's directly to 2.5V, 3.3V, or 5V logic levels. The transceiver supports a low-power standby mode and wake over CAN which is compliant to the ISO 11898-2:2016 defined wake-up pattern (WUP).


The transceivers also include thermal-shutdown (TSD), TXD-dominant time-out (DTO), supply undervoltage detection, and ± 70 V bus fault protection. The devices have defined fail-safe behavior in supply undervoltage or floating pin scenarios.

Simplified Schematic

3.Pin Configurations and Functions

Table 4-1 Pin Functions

Pi	ns	Toma	Description
Name	No.	Туре	Description
TXD	1	Digital Input	CAN transmit data input; integrated pull-up
GND	2	GND	Ground connection
V _{cc}	3	POWER	Transceiver 5V supply voltage
RXD	4	DIGITAL OUTPUT	CAN receive data output, tri-stated when device powered off
NC	5	-	Not internally connected; Devices without V _{IO}
V _{IO}	5	Supply	I/O supply voltage For devices in this series with V _{IO} ports,
CANL	6	Bus IO	Low-level CAN bus input/output line
CANH	7	Bus IO	High-level CAN bus input/output line
STB	8	Digital Input	Standby input for mode control; integrated pull-up
Thermal Pad (DFN8 only)		-	Connect the thermal pad to any internal PCB ground plane using multiple vias for optimal thermal performance.

- 2 -

4. Specifications

5.1 Absolute Maximum Ratings

See Note (1)(2)

Parameter	Description	MIN	MAX	UNIT
V _{CC}	Supply voltage	-0.3	7	V
V _{IO}	Supply voltage I/O level shifter	-0.3	7	V
V _{BUS}	CAN Bus I/O voltage	-70	70	V
V _{DIFF}	Max differential voltage between CANH and CANL	-45	45	V
V_{Logic_input}	Logic input terminal voltage	-0.3	7	V
V _{RXD}	RXD output terminal voltage range	-0.3	7	V
I _{O(RXD)}	I _{O(RXD)} RXD output current		8	mA
Tı	Junction temperature		165	°C
T _{STG}	Storage temperatur	-65	150	°C

⁽¹⁾ Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime. (2) All voltage values, except differential I/O bus voltages, are with respect to ground terminal.

5.2 ESD Ratings

	Test Conditions	VALUE	UNIT	
Lluman Dady Madal (LIDM) ESD stress valtage	All terminals	±8000	\/	
Human Body Model (HBM) ESD stress voltage	CAN bus terminals (CANH, CANL)	±15000	V	
Charged Device Model (CDM) ESD stress voltage	All terminals	±2000	\/	
IEC Contact Discharge (IEC 61000-4-2)	CAN bus terminals (CANH, CANL)	±8000	V	

5.3 Recommended Operating Conditions

		MIN	NOM	MAX	UNIT
V _{cc}	Supply Voltage	4.5	5	5.5	V
V _{IO}	Supply voltage for I/O Level-Shifting 1.7 5.5		5.5	V	
I _{OH(RXD)}	RXD terminal high-level output current, Devices with V_{IO}	-1.5			
I _{OL(RXD)}	RXD terminal low-level output current, Devices with V _{IO} 1.5		A		
I _{OH(RXD)}	RXD terminal high-level output current, Devices without V _{IO} -2		mA		
I _{OL(RXD)}	RXD terminal low-level output current, Devices without V_{10}			2	

www.gmmicro.com - 3 -Tel: (+86) 13135660803 Email: sales@gmmicro.com

5.4 Supply Characteristics

Over recommended operating conditions with $T_J = -40^{\circ}\text{C}$ to 150°C (unless otherwise noted)

ı	PARAMETER		TEST CONDITIONS		TYP	MAX	UNIT
			STB = 0V, TXD = 0V, $R_L = 60\Omega$ $C_L = open$, See Figure 6-1		40	70	mA
		Dominant	STB = 0V, TXD = 0V, $R_L = 50\Omega$ $C_L = \text{open}$, See Figure 6-1		45	80	mA
	Supply current Normal mode	Recessive	STB = 0V, TXD = V_{CC} or V_{IO} , R_L = 50Ω , C_L = open See Figure 6-1		0.6	1	mA
I _{cc}		Dominant with bus fault	STB = 0V, TXD = 0V CANH = CANL = ± 25 V, R _L = open C _L = open, See Figure 6-1			130	mA
	Supply current Standby mode Devices with V _{IO}		STB = TXD = V_{IO} , $R_L = 50 \Omega$ $C_L = open$, See Figure 6-1		2.2	5	μΑ
	Supply current Stand Devices without V _{IO}	by mode	STB = TXD = V_{CC} , $R_L = 50\Omega$ $C_L = open$, See Figure 6-1			15	μΑ
	I/O supply current Normal mode	Dominant	STB = 0V, TXD = 0V RXD floating		100	300	μΑ
I _{IO}	I/O supply current Normal mode	Recessive	STB = 0V, TXD = 0V RXD floating			48	μΑ
	I/O supply current Standby mode $STB = V_{IO}$, TXD = 0V RXD floating				2.2	5	μΑ
	Rising undervoltage of	Rising undervoltage detection on V _{CC} for protected mode			3.2	3.4	V
UVcc	Falling undervoltage detection on V _{cc} for protected mode			2.8	3.0	3.25	V
V _{HYS(UVCC)}	Hysteresis voltage on UV _{CC}				200		mV
	Rising undervoltage detection on V _{IO} (Devices with V _{IO})				2.2	2.65	V
UV_{VIO}	Falling undervoltage detection on V _{IO} (Devices with V _{IO})			1.3	2.0	2.2	V
V _{HYS(UVIO)}	Hysteresis voltage on	UV _{IO}			200		mV

5.5 Electrical Ratings

Over recommended operating conditions (unless otherwise noted).

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
		Driver Ele	ctrical Characteristics		•		
	Daminant autout valtage	CANH	STB = 0V, TXD = 0V, $50\Omega \le R_L \le 65\Omega$	2.75		4.5	V
$V_{O(DOM)}$	Dominant output voltage		C _L = open, R _{CM} = open			2.25	
	Normal mode	CANL	See Figure 6-2 and Figure 7-3	0.5		2.25	V
	Decessive output valtage	CANH and	$STB = OV, TXD = V_{IO},$				
$V_{O(REC)}$	Recessive output voltage Normal mode	CANH and	R_L = open (no load), R_{CM} = open	2	0.5V _{CC}	3	V
	Normarmode	CAINL	See Figure 6-2 and Figure 7-3				
			STB = 0V, TXD = 250kHz, 1MHz,				
V_{SYM}	Driver symmetry (V _{O(CANH)} + V	/\//	2.5MHz, $R_L = 60\Omega$, $C_{SPLIT} = 4.7$ nF,	0.9		1.1	V/V
V SYM	Driver symmetry (Vo(canh) + V	′O(CANL))/ ∨ CC	C _L = open, R _{CM} = open	0.9		1.1	V / V
			See Figure 6-2 and Figure 8-2				
V	DC output symmetry		STB = 0V, $R_L = 60\Omega$, $C_L = open$	-400		400	mV
V _{SYM_DC}	(V _{CC} - V _{O(CANH)} - V _{O(CANL)})		See Figure 6-2 and Figure 7-3	-400		400	IIIV
			STB = 0V, TXD = 0V, $50\Omega \le R_L \le 65\Omega$, CL	1.5		3	V
	Differential output voltage Normal mode Dominant	CANH - CANL	= open, See <u>Figure 6-2</u> and <u>Figure 7-3</u>	1.5			, v
V _{OD(DOM)}			STB = 0V, TXD = 0V, $45\Omega \le R_L \le 70\Omega$, C_L	1.4		3.3	V
V OD(DOM)			= open, See <u>Figure 6-2</u> and <u>Figure 7-3</u>	1.7		3.5	
			STB = 0V, TXD = 0V, R_L = 2240 Ω , C_L =	1.5		5	V
			open, See <u>Figure 6-2</u> and <u>Figure 7-3</u>				
			STB = 0V, TXD = V_{IO} , $R_L = 60\Omega$, $C_L = open$	-120		12	mV
V _{OD(REC)}	Differential output voltage	CANH -	See Figure 6-2 and Figure 7-3	120			
• OD(REC)	Normal mode Recessive	CANL	STB = 0V, TXD = V_{IO} , R_L = open, C_L =	-50		50	mV
			open See <u>Figure 6-2</u> and <u>Figure 7-3</u>				
		CANH		-0.1		0.1	V
$V_{O(STB)}$	Bus output voltage Standby	CANL	STB = V _{IO} , R _L = open	-0.1		0.1	V
• O(21R)	mode	CANH and	See Figure 6-2 and Figure 7-3	-0.2			.,
		CANL				0.2	V
			STB = 0 V, TXD = 0V				
			V _(CANH) = -15V to 40V, CANL = open	-115			mA
	Short-circuit steady-state ou	tput	See Figure 6-7 and Figure 7-3				
I _{OS(SS_DOM)}	current, dominant Normal m	iode	STB = 0 V, TXD = 0V				
			$V_{(CAN_L)} = -15V$ to 40V, CANH = open			115	mA
			See Figure 6-7 and Figure 7-3				
	Short circuit stoady state our	tnut	STB = 0V, TXD = V_{IO} , $-27V \le V_{BUS} \le 32V$,				
I _{OS(SS_REC)}	Short-circuit steady-state ou	-	where V _{BUS} = CANH = CANL	-5		5	mA
	current, recessive Normal mode		See Figure 6-7 and Figure 7-3				

5.5 Electrical Characteristics(continued)

Over recommended operating conditions with T_J = -40°C to 150°C (unless otherwise noted)

	Parameter	Test Conditions	Min	Тур	Max	Unit
	Receiv	er Electrical Characteristics				
V _{IT}	Input threshold voltage Normal mode	STB = 0V, $-12V \le V_{CM} \le 12V$ See Figure 6-3 and Table 7-6	500		900	mV
V _{IT(STB)}	Input threshold Standby mode	STB = V_{IO} , $-12V \le V_{CM} \le 12V$ See <u>Figure 6-3</u> and <u>Table 7-6</u>	400		1150	mV
V_{DOM}	Dominant state differential input voltage range Normal mode	STB = 0V, $-12V \le V_{CM} \le 12V$ See Figure 6-3 and Table 7-6	0.9		9	V
V_{REC}	Recessive state differential input voltage range Normal mode	STB = 0V, $-12V \le V_{CM} \le 12V$ See Figure 6-3 and Table 7-6	-4		0.5	V
$V_{DOM(STB)}$	Dominant state differential input voltage range Standby mode	STB = V_{IO} , $-12V \le V_{CM} \le 12V$ See <u>Figure 6-3</u> and <u>Table 7-6</u>	1.15		9	V
V _{REC(STB)}	Recessive state differential input voltage range Standby mode	STB = V_{IO} , $-12V \le V_{CM} \le 12V$ See <u>Figure 6-3</u> and <u>Table 7-6</u>	-4		0.4	V
V _{HYS}	Hysteresis voltage for input threshold Normal mode	STB = 0V, $-12V \le V_{CM} \le 12V$ See Figure 6-3 and Table 7-6		120		mV
V_{CM}	Common-mode range Normal and standby modes	See Figure 6-3 and Table 7-6	-30		30	V
I _{LKG(IOFF)}	Unpowered bus input leakage current	CANH = CANL = 5V, $V_{CC} = V_{IO} = GND$			5	μΑ
Cı	Input capacitance to ground (CANH or CANL)	$TXD = V_{IO}^{(1)}$			20	pF
C_{ID}	Differential input capacitance				10	рF
R_{ID}	Differential input resistance	STB = 0V, TXD = V _{IO} ⁽¹⁾	20	30	50	kΩ
R _{IN}	Single-ended input resistance (CANH or CANL)	$-12V \le V_{CM} \le 12V$	10	15	25	kΩ
R _{IN(M)}	Input resistance matching [1 – (R _{IN(CANH)} / R _{IN(CANL)})] × 100 %	$V_{(CAN_H)} = V_{(CAN_L)} = 5V$	-1		1	%
	TXD Term	inal (CAN Transmit Data Input)				
V_{IH}	High-level input voltage	Devices without V _{IO}	0.7V _{CC}			V
V _{IH}	High-level input voltage	Devices with V _{IO}	0.7V _{IO}			V
V _{IL}	Low-level input voltage	Devices without V _{IO}			0.3V _{cc}	V
V _{IL}	Low-level input voltage	Devices with V _{IO}			0.3V _{IO}	V
I _{IH}	High-level input leakage current	$TXD = V_{CC} = V_{IO} = 5.5V$	-2.5	0	1	μΑ
I _{IL}	Low-level input leakage current	$TXD = 0V, V_{CC} = V_{IO} = 5.5V$	-100	-40	-7	μΑ
I _{LKG(OFF)}	Unpowered leakage current	$TXD = 5.5V, V_{CC} = V_{IO} = 0V$	-1	0	1	μΑ
Cı	Input capacitance	$V_{IN} = 0.4 \times \sin(2 \times \pi \times 2 \times 10^6 \times t) + 2.5 V$		5		рF

5.5 Electrical Characteristics (continued)

Over recommended operating conditions with $T_J = -40^{\circ}\text{C}$ to 150°C (unless otherwise noted)

	Parameter	Test Conditions	Min	Тур	Max	Unit		
	RXD Terminal (Can Receive Data Output)							
.,	High level output voltage	$I_0 = -2mA$, Devices without V_{10} , See Figure 6-3	0.8V _{CC}					
V _{OH}	High-level output voltage	$I_0 = -1.5$ mA, Devices with V_{IO} See Figure 6-3	0.8V _{IO}			V		
V	V _{OL} Low-level output voltage	I_0 = 2mA, Devices without V_{10} See Figure 6-3			0.2V _{CC}	V		
VOL		I_0 = 1.5mA, Devices with V_{IO} See Figure 6-3			0.2V _{IO}			
I _{LKG(OFF)}	Unpowered leakage current	RXD = 5.5V, $V_{CC} = V_{IO} = 0V$	-1	0	-1	μΑ		
	STB Ter	minal (Standby Mode Input)						
	High level in a very college	Devices without V _{IO}	0.7V _{CC}			٧		
V_{IH}	High-level input voltage	Devices with V _{IO}	0.7V _{IO}			٧		
	Laure laurel in a control la cont	Devices without V _{IO}			0.3V _{CC}	٧		
VIL	V _{IL} Low-level input voltage	Devices with V _{IO}			0.3V _{IO}	٧		
I _{IH}	High-level input leakage current	$V_{CC} = V_{IO} = STB = 5.5V$	-2		2	μΑ		
I _{IL}	Low-level input leakage current	STB = $0V$, $V_{CC} = V_{IO} = 5.5V$,	-20		-2	μΑ		
I _{LKG(OFF)}	Unpowered leakage current	STB = 5.5V, V _{CC} = V _{IO} = 0V	-1	0	1	μΑ		

⁽¹⁾ $V_{IO} = V_{CC}$ in non-V variants of device

- 7 -

5.6 Switching Characteristics

Over recommended operating conditions (unless otherwise noted)

Parameter			Test Conditions	Min	Тур	Max	Unit
		Device Switching	Characteristics	•			
t _{PROP(LOOP1)}	Total loop delay, Driver inpu	ut (TXD) to receiver	STB = 0V, V_{IO} = 2.8V to 5.5V, R_L = 60 Ω , C_L = 100pF, $C_{L(RXD)}$ = 15pF, See Figure 6-4		110	160	
	output (IMD), recessive to t		STB = 0V, V_{IO} = 1.7V, R_L = 60 Ω , C_L = 100pF, $C_{L(RXD)}$ = 15pF, See Figure 6-4		150	220	ns
t _{PROP(LOOP2)}	Total loop delay, driver inpu output (RXD), dominant to		STB = 0V, V_{IO} = 2.8V to 5.5V, R_L = 60 Ω , C_L = 100pF, $C_{L(RXD)}$ = 15pF, See <u>Figure 6-4</u> STB = 0V, V_{IO} = 1.7V, R_L = 60 Ω , C_L =		150	220	113
t _{MODE}	Mode change time, from N	ormal to Standby or	100pF, C _{L(RXD)} = 15pF, See <u>Figure 6-4</u> See <u>Figure 6-5</u>		20	255 45	μs
+	from Standby to Normal	nattorn		0.5		1 0	
t _{WK_FILTER}	Filter time for valid wake up	pattern	See <u>Figure 7-5</u>	0.5		1.8	μs
twk_timeout	Bus wake-up timeout	Duting Control to		0.8		6	ms
	Dua na antiana dalah timan bial	Driver Switching	Characteristics				
t _{pHR}	Propagation delay time, high recessive (dominant to rece	essive)			80		
t _{pLD}	Propagation delay time, low dominant (recessive to don		STB = 0V, $R_L = 60\Omega$, $C_L = 100pF$		65		ns
t _{sk(p)}	Pulse skew (tpHR - tpLD)		See <u>Figure 6-2</u>		15		
t_R	Differential output signal ris	se time			45		
t _F	Differential output signal fa	III time			45		
t _{TXD_DTO}	Dominant timeout		See Figure 6-6	1.2		4.0	ms
		Receiver Switchin	g Characteristics			•	
t _{pRH}	Propagation delay time, but high output (Dominant to R	•			55		ns
t _{pDL}	Propagation delay time, but low output (Recessive to Do	s dominant input to	STB = 0V, C _{L(RXD)} = 15pF See Figure 6-3		55		ns
t _R	RXD Output signal rise time	·	inguices		10		ns
t _F	RXD Output signal fall time				10		ns
	<u> </u>	FD Timing Ch	aracteristics				
		t _{BIT(TXD)} = 500ns		435		530	
t _{BIT(BUS)}	Bit time on CAN bus	t _{BIT(TXD)} = 200ns		155		210	
ν,	output pins	$t_{BIT(TXD)} = 125 \text{ns}^{(1)}$	1	85		130	
		t _{BIT(TXD)} = 500ns	STB = 0V, $R_L = 60\Omega$, $C_L = 100$ pF,	400		550	
t _{BIT(RXD)}	Bit time on RXD output	$t_{BIT(TXD)} = 200$ ns	C _{L(RXD)} = 15pF,	120		220	ns
···-/	pins	$t_{BIT(TXD)} = 125 \text{ns}^{(1)}$	$\Delta t_{REC} = t_{BIT(RXD)} - t_{BIT(BUS)}$	75		135	
		$t_{BIT(TXD)} = 500 \text{ ns}$	See <u>Figure 6-4</u>	-65		40	
Δt_{REC}	Receiver timing symmetry	$t_{BIT(TXD)} = 200 \text{ ns}$	1	-40		15	
		$t_{BIT(TXD)} = 125 \text{ ns}^{(1)}$	1	-40		10	
	$\tau_{BIT(TXD)} = 125 \text{ nS}^{(1)}$			10		-0	

- 8 -

⁽¹⁾ Measured during characterization and not an ISO 11898-2:2016 parameter.

6. Parameter Measurement Information

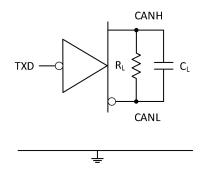


Figure 6-1. I_{CC} Test Circuit

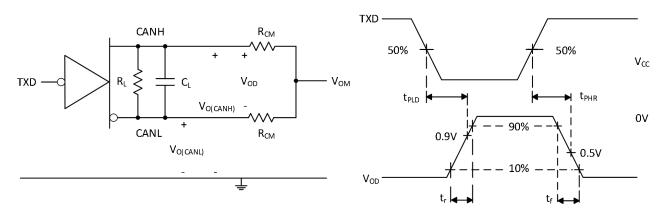


Figure 6-2. Driver Test Circuit and Measurement

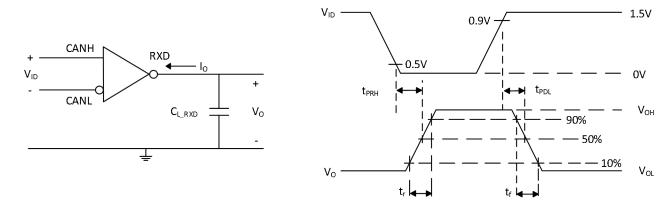


Figure 6-3. Receiver Test Circuit and Measurement

- 9 -

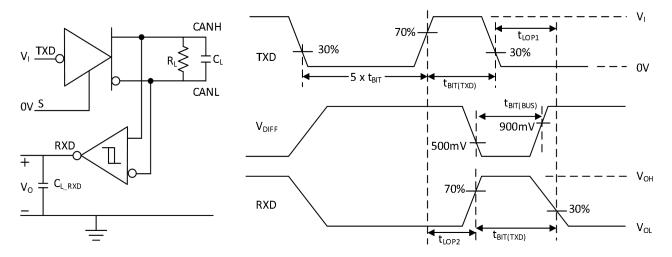


Figure 6-4. Transmitter and Receiver Timing Test Circuit and Measurement

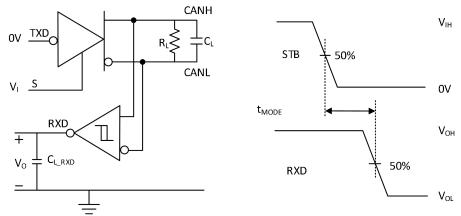


Figure 6-5. t_{MODE} Test Circuit and Measurement

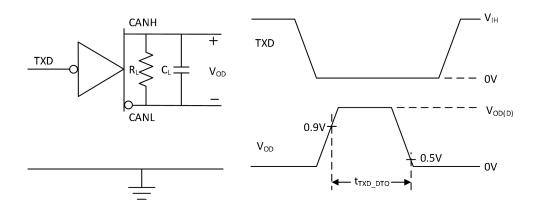


Figure 6-6. TXD Dominant Timeout Test Circuit and Measurement

www.gmmicro.com - 10 - Tel: (+86) 13135660803
Copyright © GATEMODE Corp. Email: sales@gmmicro.com

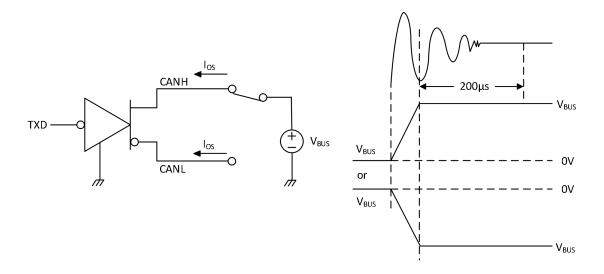


Figure 6-7. Driver Short Circuit Current Test and Measurement

7. Detailed Description

7.1 Overview

The HMT1044 devices meet or exceed the specifications of the ISO 11898-2:2016 high speed CAN (Controller Area Network) physical layer standard. The devices have been certified to the requirements of ISO 11898-2:2016 physical layer requirements according to the GIFT/ICT high speed CAN test specification. The transceivers provide a number of different protection features making them ideal for the stringent automotive system requirements while also supporting CAN FD data rates up to 8Mbps.

7.2 Feature Description

7.2.1 Pin Description

7.2.1.1 TXD

The TXD input is a logic-level signal, referenced to either V_{CC} or V_{IO} from a CAN controller to the transceiver.

7.2.1.2 GND

GND is the ground pin of the transceiver. The pin must be connected to the PCB ground.

7.2.1.3 V_{CC}

V_{CC} provides the 5V power supply to the CAN transceiver.

7.2.1.4 RXD

RXD is the logic-level signal, referenced to either V_{CC} or V_{IO} , from the HMT1044 to a CAN controller. This pin is only driven once V_{IO} is present.

7.2.1.5 V_{IO}

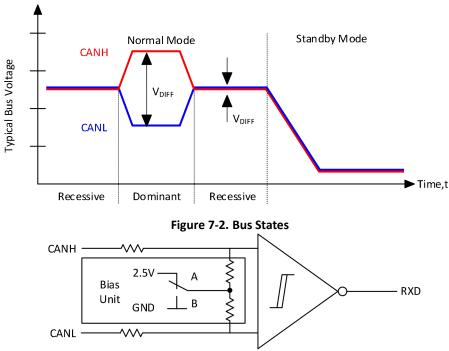
The V_{10} pin provides the digital I/O voltage to match the CAN controller voltage thus avoiding the requirement for a level shifter. It supports voltages from 1.7V to 5.5V providing the widest range of controller support.

7.2.1.6 CANH and CANL

The CANH and CANL pins are the CAN high and CAN low differential bus pins. These pins are internally connected to the CAN transmitter, receiver and the low-power wake-up receiver.

7.2.1.7 STB (Standby)

The STB pin is an input pin used for mode control of the transceiver. The STB pin can be supplied from either the system processor or from a static system voltage source. If normal mode is the only intended mode of operation, the STB pin can be tied directly to GND.


7.2.2 CAN Bus States

The CAN bus has two logical states during operation: recessive and dominant. See Figure 7-2 and Figure 7-3.

A dominant bus state occurs when the bus is driven differentially and corresponds to a logic low on the TXD and RXD pins. A recessive bus state occurs when the bus is biased to $V_{CC}/2$ via the high-resistance internal input resistors (RIN) of the receiver and corresponds to a logic high on the TXD and RXD pins.

A dominant state overwrites the recessive state during arbitration. Multiple CAN nodes may be transmitting a dominant bit at the same time during arbitration, and in this case the differential voltage of the bus is greater than the differential voltage of a single driver.

The HMT1044 transceiver implements a low-power standby (STB) mode which enables a third bus state where the bus pins are weakly biased to ground via the high resistance internal resistors of the receiver. See Figure 7-2 and Figure 7-3.

A: A - Normal Mode B: B - Standby Mode

Figure 7-3. Simplified Recessive Common Mode Bias Unit and Receiver

7.3.1 TXD Dominant Timeout (DTO)

During normal mode, the only mode where the CAN driver is active, the TXD DTO circuit prevents the local node from blocking network communication in the event of a hardware or software failure where TXD is held dominant longer than the timeout period t_{TXD_DTO} . The TXD DTO circuit is triggered by a falling edge on TXD. If no rising edge is seen before the timeout period of the circuit, t_{TXD_DTO} , the CAN driver is disabled. This frees the bus for communication between other nodes on the network. The CAN driver is reactivated when a recessive signal is seen on the TXD pin, thus clearing the dominant time out. The receiver remains active and biased to $V_{CC}/2$ and the RXD output reflects the activity on the CAN bus during the TXD DTO fault.

The minimum dominant TXD time allowed by the TXD DTO circuit limits the minimum possible transmitted data rate of the device. The CAN protocol allows a maximum of eleven successive dominant bits (on TXD) for the worst case, where five successive dominant bits are followed immediately by an error frame. The minimum transmitted data rate may be calculated using Equation 1.

Minimum Data Rate = 11 bits /
$$t_{TXD_DTO}$$
 = 11 bits / 1.2 ms = 9.2kbps (1)

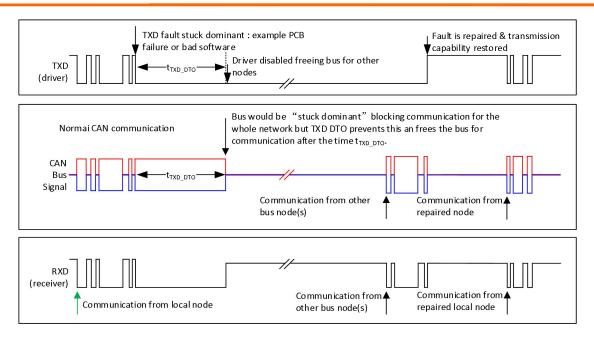


Figure 7-4. Example Timing Diagram for TXD DTO

7.3.2 Thermal Shutdown (TSD)

If the junction temperature of the HMT1044 exceeds the thermal shutdown threshold, T_{TSD} , the device turns off the CAN driver circuitry and blocks the TXD to bus transmission path. The shutdown condition is cleared when the junction temperature of the device drops below T_{TSD} . The CAN bus pins are biased to $V_{CC}/2$ during a TSD fault and the receiver to RXD path remains operational. The HMT1044 TSD circuit includes hysteresis which prevents the CAN driver output from oscillating during a TSD fault.

7.3.3 Undervoltage Lockout

The supply pins, V_{CC} and V_{IO} , have undervoltage detection that places the device into a protected state. This protects the bus during an undervoltage event on either supply pin.

Table 7-1. Undervoltage Lockout only Devices without V_{IO} pin

V _{cc}	Device State	Bus	RXD Pin
> UV _{VCC}	Normal	Per TXD	Mirrors Bus
< UV _{vcc}	Protected	High Impedance	High Impedance

Table 7-2. Undervoltage Lockout only Devices with V_{IO} pin

V _{cc}	V_{10}	Device State	Bus Output	RXD Pin
> UV _{VCC}	> UV _{VIO}	Normal	Per TXD	Mirrors Bus
< UV _{VCC}	> UV _{VIO}	STB = High: Standby Mode	Weak biased to GND	V _{IO} : Remote wake request See Remote Wake Request via Wake-Up Pattern (WUP) in Standby Mode
		STB =Low: Protected Mode	High Impedance	Recessive
> UV _{VCC}	< UV _{VIO}	Protected	High Impedance	High Impedance
< UV _{VCC}	< UV _{VIO}	Protected	High Impedance	High Impedance

Once the undervoltage condition is cleared and t_{MODE} has expired the HMT1044 will transition to normal mode and the host controller can send and receive CAN traffic again

7.3.4 Unpowered Device

The HMT1044 is designed to be an ideal passive or no load to the CAN bus if the device is unpowered. The bus pins were designed to have low leakage currents when the device is unpowered, so they do not load the bus. This is critical if some nodes of the network are unpowered while the rest of the of network remains operational.

The logic pins also have low leakage currents when the device is unpowered, so they do not load other circuits which may remain powered.

7.3.5 Floating Terminals

The HMT1044 has internal pull-ups on critical pins which place the device into known states if the pin floats. This internal bias should not be relied upon by design though, especially in noisy environments, but instead should be considered a failsafe protection feature.

When a CAN controller supporting open-drain outputs is used an adequate external pull-up resistor must be chosen. This ensures that the TXD output of the CAN controller maintains acceptable bit time to the input of the CAN transceiver. See <u>Table 7-3</u> for details on pin bias conditions.

Table 7-3. Pin Bias

Pin	Pull-up or Pull-down	Comment
TXD	Pull-up	Weakly biases TXD towards recessive to prevent bus blockage or
IND	Pull-up	TXD DTO triggering
STB	Pull-up	Weakly biases STB towards low-power standby mode to prevent
318	Pull-up	excessive system power

7.4 Device Functional Modes

7.4.1 Operating Modes

The HMT1044 has two main operating modes; normal mode and standby mode. Operating mode selection is made by applying a high or low level to the STB pin.

Table 7-4. Operating Modes

STB	Device Mode	Driver	Receiver	RXD Terminal
High	Low current standby mode with bus wake-up	Disabled	Low-power receiver and bus monitor enable	High (recessive) until valid WUP is received See Remote Wake Request via Wake-Up Pattern (WUP) in Standby Mode
Low	Normal Mode	Disabled	Disabled	Mirrors bus state

7.4.2 Normal Mode

This is the normal operating mode of the HMT1044. The CAN driver and receiver are fully operational and CAN communication is bi-directional.

The driver is translating a digital input on the TXD input to a differential output on the CANH and CANL bus pins. The receiver is translating the differential signal from CANH and CANL to a digital output on the RXD output.

7.4.3 Standby Mode

This is the low-power mode of the HMT1044. The CAN driver and main receiver are switched off and bi-directional CAN communication is not possible. The low-power receiver and bus monitor circuits are enabled to allow for RXD wake-up requests via the CAN bus. A wake-up request is output to RXD as shown in Figure 7-5. Pin RXD follows the bus after a wake-up request has been detected and the device will be reactivated to normal mode by pulling the STB pin low again. The CAN bus pins are weakly pulled to GND in this mode; See Figure 7-2 and Figure 7-3.

In standby mode, only the V_{IO} supply is required therefore the V_{CC} may be switched off for additional system level current savings.

7.4.3.1 Remote Wake Request via Wake-Up Pattern (WUP) in Standby Mode

The HMT1044 supports a remote wake-up request that is used to indicate to the host controller that the bus is active and the node should return to normal operation.

The device uses the multiple filtered dominant wake-up pattern (WUP) from the ISO 11898-2:2016 standard to qualify bus activity. Once a valid WUP has been received, the wake request is indicated to the controller by a falling edge and low period corresponding to a filtered dominant on the RXD output of the HMT1044.

The WUP consists of a filtered dominant pulse, followed by a filtered recessive pulse, and finally by a second filtered dominant pulse. The first filtered dominant initiates the WUP, and the bus monitor then waits on a filtered recessive; other bus traffic does not reset the bus monitor. Once a filtered recessive is received the bus monitor is waiting for a filtered dominant and again, other bus traffic does not reset the bus monitor. Immediately upon reception of the second filtered dominant the bus monitor recognizes the WUP and drives the RXD output low every time an additional filtered dominant signal is received from the bus.

For a dominant or recessive to be considered filtered, the bus must be in that state for more than the t_{WK_FILTER} time. Due to variability in t_{WK_FILTER} the following scenarios are applicable. Bus state times less than $t_{WK_FILTER(MIN)}$ are never detected as part of a WUP and thus no wake request is generated. Bus state times between $t_{WK_FILTER(MIN)}$ and $t_{WK_FILTER(MAX)}$ may be detected as part of a WUP and a wake-up request may be generated. Bus state times greater than $t_{WK_FILTER(MAX)}$ are always detected as part of a WUP, and thus a wake request is always generated. See <u>Figure 7-5</u> for the timing diagram of the wake-up pattern.

The pattern and t_{WK_FILTER} time used for the WUP prevents noise and bus stuck dominant faults from causing false wake-up requests while allowing any valid message to initiate a wake-up request.

The ISO 11898-2:2016 standard has defined times for a short and long wake-up filter time. The t_{WK_FILTER} timing for the device has been picked to be within the minimum and maximum values of both filter ranges. This timing has been chosen such that a single bit time at 500kbps, or two back-to-back bit times at 1Mbps triggers the filter in either bus state. Any CAN frame at 500kbps or less would contain a valid WUP.

For an additional layer of robustness and to prevent false wake-ups, the device implements a wake-up timeout feature. For a remote wake-up event to successfully occur, the entire WUP must be received within the timeout value $t \le t_{WK_TIMEOUT}$. If not, the internal logic is reset and the transceiver remains in its current state without waking up. The full pattern must then be transmitted again, conforming to the constraints mentioned in this section. See <u>Figure 7-5</u> for the timing diagram of the wake-up pattern with wake timeout feature.

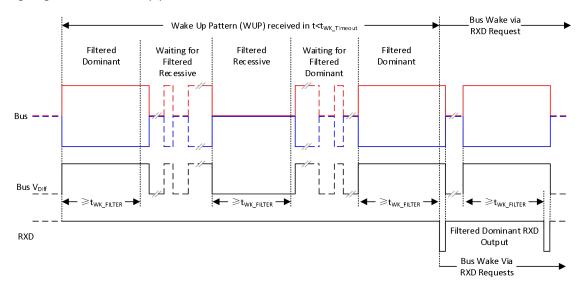


Figure 7-5. Wake-Up Pattern (WUP) with twk_TIMEOUT

7.4.4 Driver and Receiver Function

The HMT1044 logic I/Os support CMOS levels with respect to either V_{CC} for 5V systems or V_{IO} for compatibility with MCUs that support 2.5V, 3.3V, or 5V systems.

Table 7-5. Driver Function Table

Device Mode	TVD Innut(1)	Bus Outputs		Driven Bus State(2)	
Device Mode	TXD Input(1)	CANH	CANL	Driven Bus State(2)	
Normal	Low	High	Low	High impedance	
NOTITIAL	High or open	High impedance	High impedance	Biased recessive	
Standby	X	High impedance	High impedance	Biased to ground	

⁽¹⁾ X = irrelevant

Table 7-6. Receiver Function Table Normal and Standby Mode

Device Mode	CAN Differential Inputs V _{ID} = V _{CANH} - V _{CANL}	Bus State	RXD Pin
Normal	V _{ID} ≥ 0.9 V	Dominant	Low
	0.5 V < V _{ID} < 0.9 V Undefined		Undefined
	V _{ID} ≤ 0.5 V	Recessive	High
Standby	V _{ID} ≥ 1.15 V	Dominant	11: 1 1 16
	0.4 V < V _{ID} < 1.15 V	Undefined	High Low if a remote wake event occurred See Figure 7-5
	V _{ID} ≤ 0.4 V	Recessive	occurred See <u>Figure 7-5</u>
Any	Open (V _{ID} ≈ 0 V)	Open	High

⁽²⁾ For bus state and bias see Figure 7-2 and Figure 7-3

8. Application and Implementation

8.1 Typical Applications

The HMT1044 transceiver can be used in applications with a host controller or FPGA that includes the link layer portion of the CAN protocol. <u>Figure 8-1</u> shows a typical configuration for 5V controller applications. The bus termination is shown for illustrative purposes.

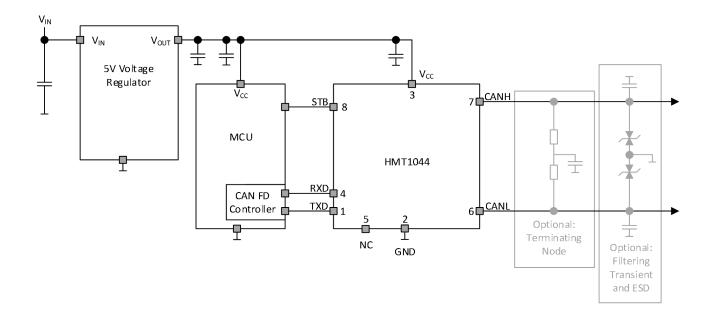


Figure 8-1. Transceiver Application Using 5V IO Connections

8.1.1 Design Requirements

8.1.1.1 CAN Termination

Termination may be a single 120Ω resistor at each end of the bus, either on the cable or in a terminating node. If filtering and stabilization of the common-mode voltage of the bus is desired then split termination may be used, see Figure 8-2. Split termination improves the electromagnetic emissions behavior of the network by filtering higher-frequency common-mode noise that may be present on the differential signal lines.

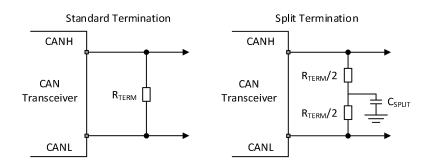


Figure 8-2. CAN Bus Termination Concepts

www.gmmicro.com - 18 - Tel: (+86) 13135660803
Copyright © GATEMODE Corp. Email: sales@gmmicro.com

8.1.2 Detailed Design Procedures

8.1.2.1 Bus Loading, Length and Number of Nodes

The ISO 11898-2 Standard specifies a maximum bus length of 40 m and maximum stub length of 0.3 m. However, with careful design, users can have longer cables, longer stub lengths, and many more nodes to a bus. A large number of nodes requires transceivers with high input impedance such as the HMT1042 family of transceivers.

Many CAN organizations and standards have scaled the use of CAN for applications outside the original ISO 11898-2. They have made system-level trade-offs for data rate, cable length, and parasitic loading of the bus. Examples of some of these specifications are ARINC825, CANopen, DeviceNet and NMEA2000.

The HMT1044 family is specified to meet the 1.5V requirement with a 50Ω load, incorporating the worst case including parallel transceivers. The differential input resistance of the HMT1044 family is a minimum of $30k\Omega$. If 100 HMT1044 family transceivers are in parallel on a bus, this is equivalent to a 300Ω differential load worst case. That transceiver load of 300Ω in parallel with the 60Ω gives an equivalent loading of 50Ω . Therefore, the HMT1042 family theoretically supports up to 100 transceivers on a single bus segment. However, for CAN network design margin must be given for signal loss across the system and cabling, parasitic loadings, network imbalances, ground offsets and signal integrity thus a practical maximum number of nodes is typically much lower. Bus length may also be extended beyond the original ISO 11898 standard of 40 m by careful system design and data rate tradeoffs. For example, CANopen network design guidelines allow the network to be up to 1 km with changes in the termination resistance, cabling, less than 64 nodes and significantly lowered data rate.

This flexibility in CAN network design is one of the key strengths of the various extensions and additional standards that have been built on the original ISO 11898-2 CAN standard. In using this flexibility comes the responsibility of good network design and balancing these tradeoffs.

A typical CAN application may have a maximum bus length of 40 meters and maximum stub length of 0.3 m. However, with careful design, users can have longer cables, longer stub lengths, and many more nodes to a bus. A high number of nodes requires a transceiver with high input impedance such as the HMT1044

Many CAN organizations and standards have scaled the use of CAN for applications outside the original ISO 11898-2 standard. They made system level trade off decisions for data rate, cable length, and parasitic loading of the bus. Examples of these CAN systems level specifications are ARINC 825, CANopen, DeviceNet, SAE J2284, SAE J1939, and NMEA 2000.

A CAN network system design is a series of tradeoffs. In the ISO 11898-2:2016 specification the driver differential output is specified with a bus load that can range from 50Ω to 65Ω where the differential output must be greater than 1.5V. The HMT1044 family is specified to meet the 1.5V requirement down to 50Ω and is specified to meet 1.4V differential output at 45Ω bus load. The differential input resistance of the HMT1044 is a minimum of $40k\Omega$. If 100 HMT1044 transceivers are in parallel on a bus, this is equivalent to a 400Ω differential load in parallel with the nominal 60Ω bus termination which gives a total bus load of approximately 52Ω . Therefore, the HMT1044 family theoretically supports over 100 transceivers on a single bus segment. However, for a CAN network design margin must be given for signal loss across the system and cabling, parasitic loadings, timing, network imbalances, ground offsets, and signal integrity thus a practical maximum number of nodes is often lower. Bus length may also be extended beyond 40 meters by careful system design and data rate tradeoffs. For example, CANopen network design guidelines allow the network to be up to 1 km with changes in the termination resistance, cabling, less than 64 nodes and significantly lowered data rate.

This flexibility in CAN network design is one of the key strengths of the various extensions and additional standards that have been built on the original ISO 11898-2 CAN standard. However, when using this flexibility the CAN network system designer must take the responsibility of good network design to ensure robust network operation. Please refer to the application report SLLA270: Controller Area Network Physical layer requirements. This document discusses in detail all system design physical layer parameters.

- 19 -

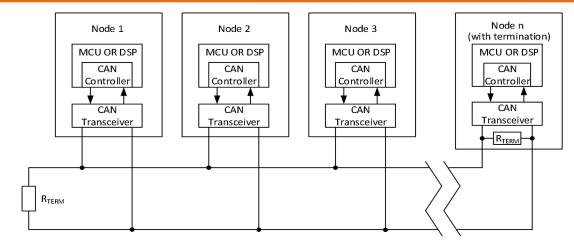


Figure 8-3. Typical CAN Bus

8.3 System Examples

The HMT1044 CAN transceiver is typically used in applications with a host controller or FPGA that includes the link layer portion of the CAN protocol. A 2.5V, or 3.3V application is shown in <u>Figure 8-4</u>. The bus termination is shown for illustrative purposes.

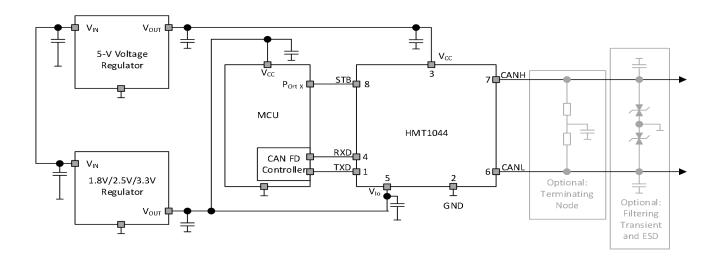


Figure 8-4. Typical CAN Bus Application Using 3.3V CAN Controller

9. Power Supply Recommendations

The HMT1044 transceiver is designed to operate with a main V_{CC} input voltage supply range between 4.5V and 5.5V. The HMT1044 implements an IO level shifting supply input, V_{IO} , designed for a range between 2.5V and 5.5V. Both the V_{CC} and V_{IO} inputs must be well regulated. In addition to the power supply filtering a decoupling capacitance, typically 100nF, should be placed near the CAN transceiver's main V_{CC} and V_{IO} supply pins.

10. Layout

Robust and reliable bus node design often requires the use of external transient protection device in order to protect against EFT and surge transients that may occur in industrial environments. Because ESD and transients have a wide frequency bandwidth from approximately 3 MHz to 3 GHz, high-frequency layout techniques must be applied during PCB design. The family comes with high on-chip IEC ESD protection, but if higher levels of system level immunity are desired external TVS diodes can be used. TVS diodes and bus filtering capacitors should be placed as close to the on-board connectors as possible to prevent noisy transient events from propagating further into the PCB and system.

10.1 Layout Guidelines

- Place the protection and filtering circuitry as close to the bus connector, J1, to prevent transients, ESD and noise from propagating onto the board. In this layout example a transient voltage suppression (TVS) device, D1, has been used for added protection. The production solution can be either bi-directional TVS diode or varistor with ratings matching the application requirements. This example also shows optional bus filter capacitors C4 and C5. Additionally (not shown) a series common mode choke (CMC) can be placed on the CANH and CANL lines between the transceiver U1 and connector J1.
- Design the bus protection components in the direction of the signal path. Do not force the transient current to divert from the signal path to reach the protection device.
- Use supply (V_{CC}) and ground planes to provide low inductance.
- Use at least two vias for supply (V_{CC}) and ground connections of bypass capacitors and protection devices to minimize trace and via inductance.
- Bypass and bulk capacitors should be placed as close as possible to the supply terminals of transceiver,
- \bullet examples are C1, C2 on the V_{CC} supply and C6 and C7 on the V_{IO} supply.
- Bus termination: this layout example shows split termination. This is where the termination is split into two resistors, R6 and R7, with the center or split tap of the termination connected to ground via capacitor C3. Split termination provides common mode filtering for the bus. When bus termination is placed on the board instead of directly on the bus, additional care must be taken to ensure the terminating node is not removed from the bus thus also removing the termination. See the application section for information on power ratings needed for the termination resistor(s).
- To limit current of digital lines, serial resistors may be used. Examples are R2, R3, and R4. These are not required.
- Terminal 1: R1 is shown optionally for the TXD input of the device. If an open drain host processor is used, this is mandatory to ensure the bit timing into the device is met.
- ullet Terminal 5: For devices in this series with V_{IO} ports, bypass capacitors should be placed as close to the pin as possible (example C6 and C7). For device options without V_{IO} I/O level shifting, this pin is not internally connected and can be left floating or tied to any existing net, for example a split pin connection.
- Terminal 8: is shown assuming the mode terminal, STB, will be used. If the device will only be used in normal mode, R4 is not needed and R5 could be used for the pull down resistor to GND.

www.gmmicro.com - 21 - Tel: (+86) 13135660803
Copyright © GATEMODE Corp. Email: sales@gmmicro.com

10.2 Layout Example

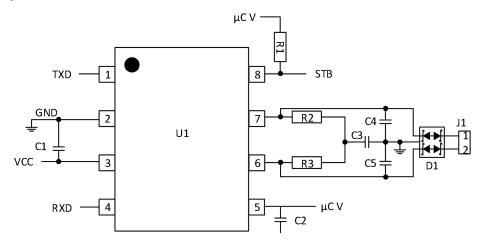
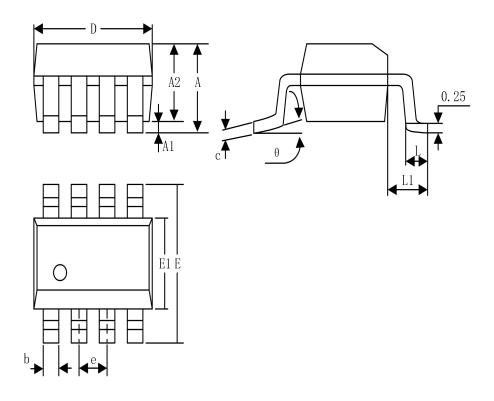
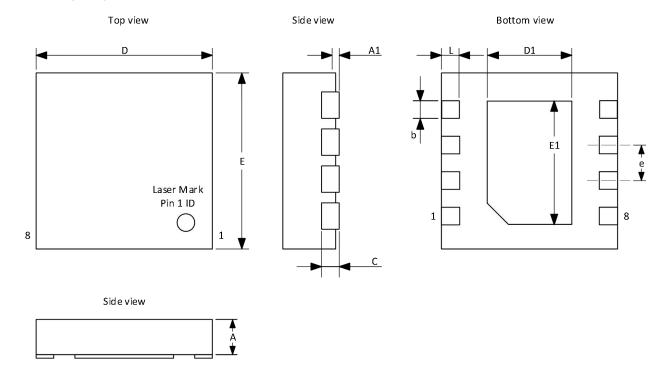



Figure 10-1. Layout Example

PACKAGE DIMENSION SOP8



SYMBOLS	MILLIMETER			
STIVIBULS	MIN	NOM	MAX	
A	1.5	-	1.7	
A1	0.1	-	0.25	
A2	1.3	1.4	1.5	
b	0.33	0.4	0.47	
С	0.2	-	0.25	
D	4.7	4.9	5.1	
E	5.9	6	6.1	
E1	3.8	3.9	4	
e	1.27(BSC)			
L	0.55	0.6	0.75	
L1	1.05(BSC)			
θ	0°	4°	8°	

- 23 -

DFN8-EP(3x3)

COMMON DIMENSIONS (UNITS OF MEASURE=MILLIMETER)

SYMBOL	MIN	NOM	MAX		
Α	0.70	0.75	0.80		
A1	0.00	-	0.05		
b	0.23	0.28	0.33		
С	0.203REF				
D	2.925	3.00	3.075		
D1	1.40	1.50	1.60		
E	2.925	3.00	3.075		
E1	2.20	2.30	2.40		
е	0.650BSC				
L	0.25	0.30	0.35		

- 24 -

Order Information

Order number	Package	Marking information	Operation Temperature Range	MSL Grade	Ship, Quantity	Green
HMT1044T	SOP8	HMT1044T	-40 to 125°C	3	T&R, 2500	Rohs
HMT1044T/3	SOP8	HMT1044T/3	-40 to 125°C	3	T&R, 2500	Rohs
HMT1044TK	DFN8-EP	HMT1044TK	-40 to 125°C	3	T&R, 3000	Rohs
HMT1044TK/3	DFN8-EP	HMT1044TK/3	-40 to 125°C	3	T&R, 3000	Rohs