

900V,AC-DC 非隔离恒压控制芯片

SS8202B

FEATURES

- 内置 900V 高雪崩能力智能功率 MOSFET
- 内置高压启动和自供电电路
- 输出电压 3.3V~24V 可通过 FB 电阻调整
- 降压型(BUCK)非隔离恒压输出
- 多种模式控制,无异音工作
- 优异的线性调整率和负载调整率
- 待机功耗低于 75mW
- 采用独有的 PWM/PFM 多模式控制技术,无需环 路补偿 电容,系统待机功耗低,效率高,动态特性好,轻载噪 声低
- 应用场景: 浪涌和群脉冲抑制工业应用
- SOP-8 封装

APPLICATIONS

- 降压型(BUCK)非隔离恒压供电
- 家电
- 智能家居
- LED

GENERAL DESCRIPTION

SS8202B 是一款内置 900V 高雪崩能力智能功率 MOSFET 的降压型 (BUCK) 非隔离恒压输出调节器。采用特有的多模式控制技术,只需要极少的外围组件就可以达到优异的恒压特性。输出电压可通过外部 FB 电阻调整。内置高压启动和自供电模块(BVSS 电压可达1000V),实现系统快速启动、超低待机功耗、自供电等功能。

SS8202B 采用独特结构解决了浪涌和群脉冲抑制能力,可实现不低于 ± 4KV 的实验测试。

芯片内置多种保护措施:如软起动;芯片供电欠压、钳位、过压保护;系统过温保护;逐周期限流保护;输 出过压、短路保护;电流采样前沿消隐。

TYPICAL APPLICATION CIRCUIT

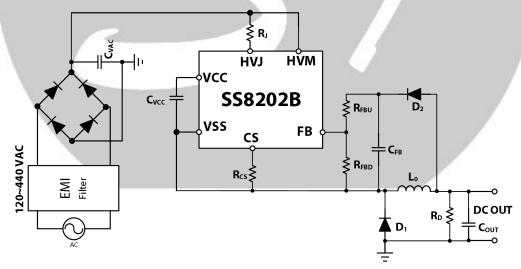


Figure 1. SS8202B Typical Application Circuit

SPECIFICATIONS

 $T_A = 25$ °C, unless otherwise noted.

Table 1.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
控制器						
高压启动击穿电压	BV _{DSS(JFET)}	VCC=10V	900	1000		V
VCC 启动电压阈值	V _{CC_ON}	V _{cc} 上升		8.5		V
VCC 欠压保护阈值	V _{CC_uvLo}	Vcc下降		6.5V		V
V _{cc} 钳位电压	V_{CC_CLP}	I _{CC} = 10mA		6.5V		V
Vcc启动电流	V _{CC_ST}	Vcc上升,但Vcc <vcc_on< td=""><td></td><td>230</td><td></td><td>μΑ</td></vcc_on<>		230		μΑ
Vcc工作电流	V _{CC_OP}	VFB=2V		160		μΑ
最大开通时间	V _{ON_MAX}			12		μs
最小关断时间	$V_{\text{of_Min}}$			14		μs
内部软启动时间	T_{Soft_state}			3		ms
最大工作频率	F _{SW_max}		30	40	55	KHz
峰值电流阀值	V _{IPK}			200		mV
异常过流保护阈值	V _{AOSP}		7 /	250		mV
电流采样前沿消隐时间	T _{LEB_CS}			150		ns
内部误差放大器基准	V _{FB_REF}	Vout=12V Iload=72mA	1.87	2	2.09	V
输出过载保护阈值	V _{FB_OLP}			1.87		V
输出过载保护延迟	T _{D_OLP}			160	1	ms
自动恢复延迟时间	T _{AUTO_RE}			1.6		S
过温保护阈值	T _{OTP_TH}			150		°C
过温保护迟滞	T _{OTP_HYS}			30		°C
功率器件			1	ı	1	
漏-源击穿电压	BV _{DSS}	ID=250μA	900			V
漏-源导通电阻	R _{DS_ON}	I _D =0.5A	3/1	20	22	Ohm
关态漏电流	I _{OFF}	VSW =900V			10	μΑ

注:"电气参数"典型值由设计和测试统计保证,最小值和最大值由测试统计保证。

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating	
引脚电压范围 Vcc	-0.3V to +10V	
钳位电流最大值 Vcc_clp	10mA	
CS 和 FB 引脚电压范围 V _{CS} V _{FB}	-0.3V to +6V	
DRAIN 引脚电压最大值 V _{DS_MAX}	900V	
HVM 引脚电压最大值	900V	
HVJ 引脚电压最大值	1000V	
人体模型静电放电能力 ESD _{hbm}	2000V	
工作结温范围 T」	−40°C to +150°C	
工作环境温度范围 T _A	-40°C to +105°C	
存储环境温度范围 Tstg	−55°C to +150°C	
引脚焊接条件	JEDEC J-STD-020	

注意,超出上述绝对最大额定值可能会导致器件永久性损坏。 这只是额定应力值,不涉及器件在这些或任何其他条件下 超出本技术规格指标的功能性操作。长期在绝对最大额定 值条件下工作会影响器件的可靠性。

THERMAL DATA

绝对最大额定值仅适合单独应用,但不适合组合使用。结温高于限制值时,会损坏芯片。监控环境温度并不能保证 T」不会超出额定温度限值。在功耗高、热阻差的应用中,可能必须降低最大环境温度。

在功耗适中、PCB 热阻较低的应用中,只要结温处于额定限值以内,最大环境温度可以超过最大限值。器件的结温($T_{\rm J}$)取决于环境温度($T_{\rm A}$)、器件的功耗($P_{\rm D}$)和封装的结到环境热阻($\theta_{\rm JA}$)。

最高结温 (T」) 由环境温度(TA) 和功耗 (PD) 通过下式计算:

$$T_J = T_A + (P_D \times \theta_{JA})$$

封装的结到环境热阻 (θ_{JA}) 基于使用 4 层板的建模和计算方法,主要取决于应用和板布局。在功耗较高的应用中,需要特别注意热板设计。 θ_{JA} 的值可能随 PCB 材料、布局和环境条件不同而异。 θ_{JA} 的额定值基于 $4" \times 3"$ 的 4 层电路板。有关板结构的详细信息,请参考 JESD 51-7 和 JESD 51-9。

Ψ_{IB} 是结到板热特性参数,单位为 °C/W. 封装的Ψ_{IB} 基于使用 4 层板的建模和计算方法。JESD51-12——"报告和使用电子封装热信息指南"中声明,热特性参数和热阻不是一回事。Ψ_{IB} 衡量沿多条热路径流动的器件功率,而 $θ_{IB}$ 只涉及一条路径。因此,Ψ_{IB} 热路径包括来自封装顶部的对流和封装的辐射,这些因素使得Ψ_{IB} 在现实应用中更有用。最高结温 (T_I) 由板温度 (T_B) 和功耗 (P_D)通过下式计算:

$$T_J = T_B + (P_D \times \Psi_{JB})$$

有关Ψ_{JB} 的详细信息,请参考 JESD51-8 和 JESD51-12。

THERMAL RESISTANCE

 θ_{JA} 和 Ψ_{JB} 针对最差条件,即器件焊接在电路板上以实现表贴封装。

Table 3. Thermal Resistance

Package Type	θ _{JA}	θ _{JC}	Unit
8-Lead SOP	145		°C /W

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

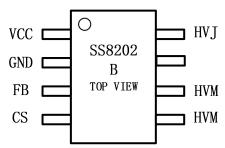


Figure 3. Pin Configuration

Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	VCC	芯片供电引脚 通过在 VCC 和 GND 之间连接一个 4.7uF 陶瓷电容以稳定芯片供电。
2	GND	芯片地引脚 芯片的功率地 和信号地。
3	FB	反馈电压采样引脚 FB 引脚通过直接检测输出电压实现恒压控制。
4	CS	电流采样引脚 调整 CS 和 GND 之间的电流采样电阻以设定所需过流点。
5,6	HVM	内置高压 MOS 漏极端引脚
8	HVJ	内置高压 JFET 和电阻输入脚
7	NC	悬空

THEORY OF OPERATION

SS8202B 是一款内置 MOS 的降压型(BUCK)非隔离恒压输出调节器。采用特有的多模式控制技术, 只需要极少的外围组件就可以达到优异的恒压特性。

软启动功能

系统上电后,母线电压 V_{bus} 直接通过 Drain 对 V_{cc} 电容进行充电,当 V_{cc} 电压达到芯片的开启阀值时,芯片开始工作;芯片内置 10V 稳压管,用于钳位 V_{cc} 电压。芯片正常工作时需要的电流很低,所以无需辅助绕组供电。

芯片内集成有 3ms(典型值)的软启动电路,在 芯片的启动过程中系统的开关频率逐渐增加以减小开关应力,且每次系统的重新启动都会伴随着一次软启动过程。

PWM/PFM 多模式控制

芯片采用 PWM/PFM 多模式控制技术,能有效降低系统待机功耗,提高效率,并减小系统工作在轻载时的噪声。

输出电压的设置(R_{FB_H}/R_{FB_L})

芯片通过 R_{FB_H} 和 R_{FB_L} 采样电感两端压降,分压后与内部 基准比较形成闭环后来恒定输出电压,输出 电压算式为:

$$V_{OUT} = \frac{V_{FB_REF} \times (R_{FB_H} + R_{FB_L})}{R_{FB_L}} - V_{D1} + V_{D2}$$
 (1)

其中, V_{FB_REF} =2V 是内部误差放大器基准 2V; VD1 是续流二极管压降; VD2 是电压反馈二极管压降; R_{FB_L} 是 FB 下拉电阻, 建议取 10K 至 51K 之间, R_{FB_H} 是 FB 上拉 电阻。

注: 若粗略计算输出电压 Vout, 可忽略 VD1 和 VD2 压降; 精确计算输出电压, 就需要考虑 VD1 和 VD2 压降对输出电压影响。

功率电感的设计(Lo)

SS8202B 可工作于 CCM、DCM 等多种工作模式,对于电感的选择涉及电感量、峰值电流以及平均电流。最终根据电感成本、尺寸以及系统效率来决定电感的大小。小感量可以减小尺寸、降低成本以及改善系统动态响应,但是,同时会增加电感的峰值电流和输出纹波并且降低系统效率。相反的,大感量可以提高效率,因为需要更多线圈数,物理体积也会更大,动态响应也会变的更慢。综合电感成本、尺寸、系统效率以及动态响应,

推荐电感纹波电流系数 r 不小于 25% , 工作在 CCM 模式下, 然后, 根据输入/输出电压、系统开关频率、满载输出电流以及推荐的电感纹波电流Δl 估算电感量, 可参考如下公式:

$$L = \frac{V_{OUT}(V_{VIN} - V_{OUT})}{V_{VIN} \times F_{SW} \times \Delta I_L}$$
 (2)

其中, $\Delta I_L = I_{OUT} * r$,系统满足工作进入 CCM 模式, V_{VIN} 按照系统的最高 V_{BUS} 电压, F_{SW} 为满载时的工作频率, ΔI_L 为电感中变化的电流,r 为电流纹波系数, 当 r=2,系统工作在 BCM 模式,如果需要设计满足满载 轻度进入 CCM 模式,建议 r<2。

峰值电流 (IL-PEAK)

当系统的电感量或者电流纹波系数 r 确定后,就可以计算 出对应电感的中的峰值电流和谷底电流点,

可用如下公式表示:

$$I_{L_PEAK} = I_{O_MAX} + \frac{\Delta I_L}{2} \tag{3}$$

$$I_{L_VALLY} = I_{O_MAX} - \frac{\Delta I_L}{2} \tag{4}$$

CS 电阻选择(Rcs)

芯片可以根据不同内置 MOS 档位,合理的设置电感的限流峰值,实际 CS 电阻的选择需要综合考虑负载电流和电流纹波,并留一定余量。CS 电阻的计算为:

$$R_{CS} = \frac{V_{IPK}(mV)}{I_{LIMIT}(mA)} \tag{5}$$

注:内部比较器延时导致实际 V 、 略高于 200mV。

输入电容选择(Cin)

输入电容的用处在于输入电压以及 MOSFET 开关尖峰的滤波。由于降压转换器的输入电流是非连续的需要电容对交流电流进行吸收,以保证平稳的输入电压。另外,输入电容需要能承受足够的电流波纹。输入纹波电流有效值估算如下:

$$I_{IN_RMS} = I_{O_MAX} \times \sqrt{D \times (1 - D)}$$
 (6)

$$D = \frac{V_{OUT}}{V_{VIN}} \tag{7}$$

注:为了减小噪声,输入电容建议采用电解电容。

输出电容选择(Cout)

输出电容的作用是输出电压的滤波以及输出动 态电流的 供应。当输出电流恒定时,输出纹波主要由 输出电容的 ESR 以及容量决定。

$$V_{RIPPLE} = V_{RIPPLE\ ESR} + V_{RIPPLE\ C} \tag{8}$$

$$V_{RIPPLE\ ESR} = \Delta I_L \times ESR \tag{9}$$

$$V_{RIPPLE_C} = \frac{\Delta I_L}{8 \times C_{OUT} \times f_{SW}}$$
 (10)

FB 采样保持电容(C1)

为保证系统的稳定工作,FB 引脚正确反映输出电压状态,需 在 FB 采 样 前 加 保 持 电 容 , 其 容 量 范 围 建 议 在 $470nF\sim1\mu F(MLCC)$ 。

续流二极管(D1)选择

为了提高系统的工作效率,续流二极管尽量使用具有快恢复时间和低导通压降的二极管。续流二极管的反向击穿电压需大于BUCK电容输入直流电压,且留有余量。

假负载电阻(R_D)选择

系统中假负载作用是防止空载或轻载时输出电压飘高。 假负载阻值过大会导致空载时输出电压飘高,而阻值过小会 影响实际的带载能力,也会增大系统的待机功耗。因此需要 合理的设置假负载阻值,3.3V 推 荐为 1.5K,5V 推荐为 2K。

逐周期峰值电流限制和前沿消隐

SS8202B 内置的峰值电流检测阀值具有随系统工作变化而变化的特点,并通过 CS 引脚实现对电感峰 值电流的调制。当 CS 引脚采样到的电压超过该阀值时,功率 MOSFET 立刻关断直至下一个开关周期开始。同时芯片内置前沿消隐电路($T_{LEB_CS}=150ns$),消隐期间,内部的逐周期峰值电流比较器会被屏蔽而不能关 MOSFET。

过载保护/短路保护

SS8202B 通过 FB 引脚来实现输出电压的过载、短 路保护。当 FB 电压低于设定电压且保持 160ms ,芯 片即实现输出过载保护。保护后,功率 MOSFET 关断,芯片振荡器工作在最低频率为 4KHz,保护发生后,芯 片会定时 1.6S 重新

检测Vcc 电压,如果过载、短路 解除,则正常工作,如未解除,继续保护。

过热保护功能

SS8202B 内置过热保护电路,会检测芯片的内部 结温, 当芯片结温超过 150℃ 时,系统会进入到自 动重启模式;当 结温回到 120℃,系统恢复正常工作

典型应用原理图

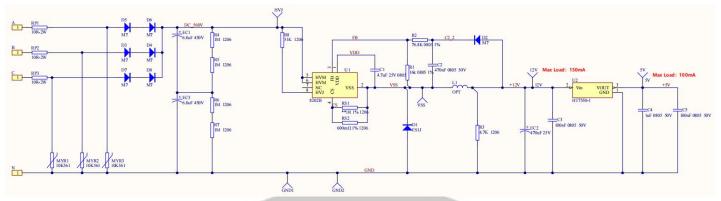
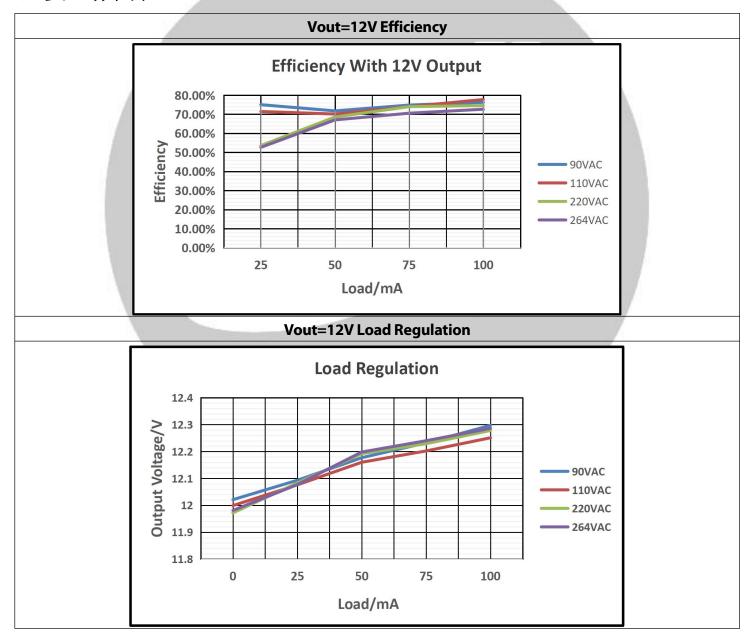
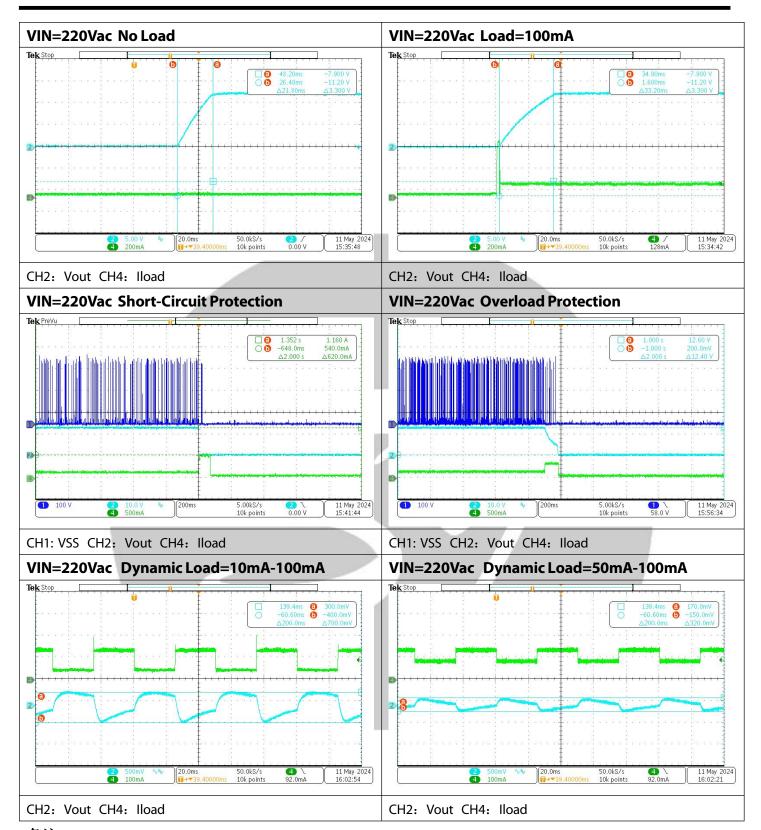
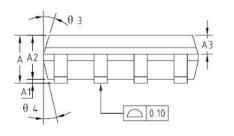
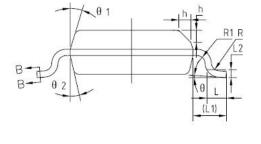




Figure 4. SS8202B Typical Application Circuit

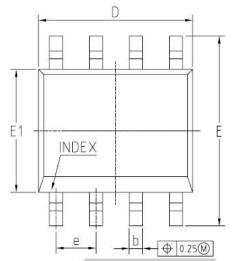
重要工作图表

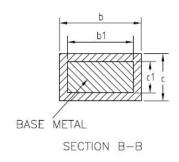
备注:


- 1、12V应用最大可带载 150mA;长时间带载,考虑可靠性余量,建议控制在 100mA 以下;
- 2、LDO 可用 5V 或 3.3V, 可选 100mA 以下型号,应用图中为建议型号,可根据实际情况选用合适型号;
- 3、三相半波应用下,需要根据交流电源电压范围选择满足要求的电解电容:


PCB 设计注意事项

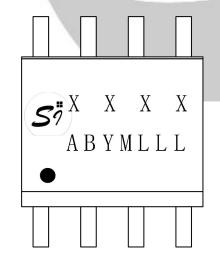
- 1. 旁路电容(Cvcc)紧靠芯片,尽量缩小Vcc 引脚经 Cvcc 到 GND 引脚的环路面积。
- 2. 电流采样电阻(R_{cs})紧靠芯片,尽量缩小 CS 引脚经 Rcs 到 GND 引脚的环路面积, 同时在保证 MOSFET 源极和续流二极管阴极 到Rcs 间通流能力的前提下尽量缩小 CS 引脚等电位布线面积以减小电磁干扰。
- 3. FB 采样电阻(R_{FB_H} 和 R_{FB_L})紧靠芯片,尽量缩小 FB 引脚经 R_{FB_L} 到 GND 引脚的环路面积,同时尽量缩小 FB 引脚等电位布线面积。
- 4. 注意区分功率地和信号地。电流采样电阻(R_{cs})和电 感(L_o)之间的连线属功率地,且为跳动电位,在保证足够通流能力的前提下尽量缩小该功率地布线面积以减小电磁干扰; R_{FB_L} 和 C_{vcc} 至 GND 引脚之间的连线属信号地。功率地和信号地采用单点连接至GND 引脚。
- 5. 在保证通流能力的前提下尽量缩小输入电容(C_{in}),MOSFET 和续流二极管构成的环路面积以减小电磁干扰。


OUTLINE DIMENSIONS



	SYMBOL	MIN	NOM	MAX	
	A	1.35	1.55	1.75	
	A1	0.10	0.15	0.25	
	A2	1.25	1.40	1.65	
	A.3	0.50	0.60	0.70	
	ь	0.38	=	0.51	
	b1	0.37	0.42	0.47	
2	С	0.17	-	0.25	
2	c1	0.17	0.20	0.23	
	D	4.80	4.90	5.00	
	E	5.80	6.00	6.20	
	E1	3.80	3.90	4.00	
	e	1.27BSC			
	L	0.45	0.60	0.80	
	L1	1.04REF			
	L2	0.25BSC			
	R	0.07	-	-	
	R1	0.07	-	-	
	h	0.30	0.40	0.50	
	θ	0.	2=2	8.	
	θ 1	15"	17'	19"	
	0 -		4.794		

COMMON DIMENSIONS


NOTES:

ALL DIMENSIONS MEET JEDEC STANDARD MS-012 AA DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.

Figure 4. 8-Lead Small Outline Package [SOP]

ORDERING GUIDE

型号	封装形式	温度范围	MK code	Built-In MOSFET	包装方式	卷盘尺寸
SS8202B	SOP8	-40°C to +125 °C	8202 ABYMLLL	900V 20.0ohm	3000/盘	13 寸卷盘

- 1, SI =Logo;
- 2, =Pin1:
- 3, XXXX =Device name:
- 4, A =Device Encode;
- 5, B = Company Encode;
- 6, YM =Year&Month;
- 7, LLL =Trace No.

注:本公司保留不预先通知而修改此文件的权利

版本信息

版本号	发布日期	页数	章节或图表	更改说明
1.0	2024.4	11		首次发布
1.1	2024.7	11	电气参数	1、最大工作频率范围由 30-40KHz 变更为 30-55KHz
1.2	2024.7	11	输出电压的设置	1、修改输出电压设置计算公式和注释说明
1.3	2024.12	11	电气参数	1、增加控制器 内部误差放大器基准约束条件, Vout=12V,lload=72mA;范围由 1.97V-2.03V 变更为 1.87V-2.09V

