有极性 RS-485 接口电路

产品简述

MS3485/MS3485M/MS3485DN/MS3485D 是一款半双工、±20kV ESD、可应用于 RS-485 通信系统的收发芯片,传输和接收速率可高达 10Mbps。片内集成的瞬态保护功能保护器件不受 IEC61000 静电放电 (ESD)和瞬态放电(EFT)的影响。此器件具有宽的共模电压范围,适合于长电缆运行的多点应用。

THE STATE OF THE S

SOP8

MSOP8

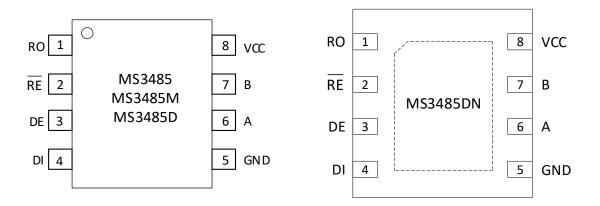
DFN8

DIP8

主要特点

- 总线引脚保护
 - ±20kV ESD (HBM)
 - ±12kV IEC61000-4-2 接触放电
 - +4kV IEC61000-4-4 快速瞬态突发
- 总线最大连接个数: 256
- 数据速率: 300bps 至 10Mbps (5V 电源)
- 工作电压范围: 2.5V-6.0V
- 三态输出
- 兼容其他 485 芯片

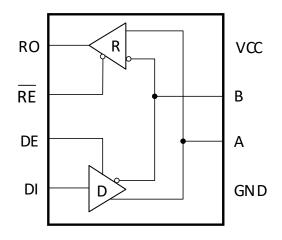
应用


- 工业自动化
- 电表
- 加热、通风和空调环境系统(HVAC)
- DMX512 网络
- 过程控制
- 运动控制
- RS485 接口

产品规格分类

产品	封装形式	丝印名称
MS3485	SOP8	MS3485
MS3485M	MSOP8	MS3485M
MS3485DN	DFN8	MS3485DN
*MS3485D	DIP8	MS3485D

^{*}暂未提供此封装。若有需要,请联系杭州瑞盟销售中心


管脚图

管脚说明

管脚编号	管脚名称	管脚属性	管脚描述
1	RO	0	接收输出端
2	— RE	1	接收使能端,低电平有效,RE 为高时,接收输出端为高阻
3	DE	I	发送使能端,高电平有效,DE 为低时,发送输出为高阻
4	DI	I	发送输入端
5	GND	-	地
6	А	1/0	总线端口 A
7	В	I/O	总线端口 B
8	VCC	-	电源

内部框图

极限参数

芯片使用中,任何超过极限参数的应用方式会对器件造成永久的损坏,芯片长时间处于极限工作 状态可能会影响器件的可靠性。极限参数只是由一系列极端测试得出,并不代表芯片可以正常工作在 此极限条件下。

参数	符号	额定值	单位
供电电压	Vcc	-0.5 ~ +7	V
控制输入电压	V_{DE} , V_{RE}	-0.5 ~ +7	V
发送输入电压	V _{DI}	-0.5 ~ +7	V
发送输出电压	V _{A,OUT} ; V _{B,OUT}	-0.5 ~ +7	V
接收输入电压	V _{A,IN} ; V _{B,IN}	-7 ∼ +12	V
接收输出电压	V _{RO}	-0.5 ~ +7	V
\data -1 → \\\.		470(SOP8 封装)	
连续功率谱(T _A =70℃)	Pc	725(DIP8 封装)	mW
存储温度范围	Tstg	-65 ~ +1 50	°C
焊接温度(10s)	T _{SOLDER}	+260	°C
A、B 管脚 ESD(HBM)	V _{нвм}	±20	kV

推荐工作条件

参数	符号	最小值	典型值	最大值	单位
电源电压	Vcc	+2.5		+6	٧
DI、DE、 RE 脚输入电压	V _{DE} , V _{RE}	-0.5		V _{CC}	V
总线电压	V _A ,V _B	-7		+12	V
工作温度范围	T _A	-40		+125	°C

电气参数(VCC=5V)

直流特性

Vcc = 5V, T_A=+25°C, 除非特别说明。

参数	符号	测	试条件	最小值	典型值	最大值	单位
11)) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		无负载	无负载		4.5		
发送差分输出	V _{OD}	R _L =100Ω			2.5		V
差分输出电压幅度失配	ΔV_{OD}	R _L =100Ω			±0.1		V
差分输出共模电压	Voc	R _L =100Ω			2.5		V
差分输出共模电压变化	ΔVoc	R _L =100Ω			±0.1		V
高电平逻辑输入电压	V _{IH}	V_{DE} , V_{RE}^- , V_{DI}		2.5			V
低电平逻辑输入电压	V _{IL}	V_{DE} , V_{RE}^- , V_{DI}				0.7	V
逻辑端口输入电流	I _{IN,LOGIIC}	V_{DE} , V_{RE}^- , V_{DI}	1			±2	μΑ
У VР Л □ +V У ¬Т У У	I _{IN,BUS}	V _{DE} =0V,	V _{IN} =5V		40		
总线端口输入电流		V _{CC} =5V	V _{IN} =0V		60		μΑ
接收差分阈值电压	V_{TH}	-7V≤V _{CM} ≤12\	/	-0.2		0	V
接收输入迟滞	ΔV_{TH}	V _{CM} =0V			25		mV
接收高电平输出电压	V _{OH}	I _{ОUТ} =-1.5mA,	V _{ID} =200mV	0			V
接收低电平输出电压	V _{OL}	I _{ОUТ} =-1.5mA,	V _{ID} =-200mV			0.4	V
接收三态(高阻)输出电流	I _{ZR}	Vcc=5V, 0V≤\	V _{OUT} ≤V _{CC}		±1		μΑ
接收输入阻抗	R _{IN}	-7V≤V _{CM} ≤12\	I		100		kΩ
al. Mr. I. ve		无负载,					
电源电流	Icc	V _{RE} =V _{DE} =V _{DI} =	=0V 或 Vcc		0.48	0.9	mA
41>>>, 4A, 31, 4= 114 - 1, >>		V _{CC} =5.0V,					
发送输出短路电流	I _{os}	A 或 B 对 GND 短接		50			mA
接收输出短路电流	I _{OSR}	0V≤V _{RO} ≤ V _{CC}			±90		mA

开关特性

Vcc = 5V, T_A=+25℃, 除非特别说明。

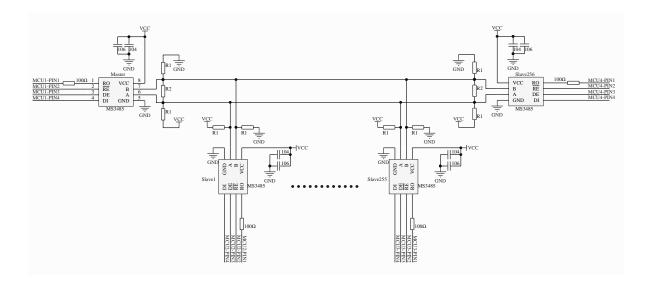
参数	符号	测试条件	最小值	典型值	最大值	单位	
	$t_{\scriptscriptstylePLH}$			35			
发送传输延时	$t_{\scriptscriptstylePHL}$	R _{DIFF} =50Ω, C _{LA} =C _{LB} =100pF		50		ns	
发送传输失真	$t_{\mathtt{PDS}}$	R _{DIF} =50Ω, C _{LA} =C _{LB} =100pF		15		ns	
发送上升时间	t _{TTR}	R _{DIF} =50Ω, C _{LA} =C _{LB} =100pF		40		ns	
发送下降时间	t _{TTF}	R _{DIF} =50Ω, C _{LA} =C _{LB} =100pF		40		ns	
发送使能开启延时输出为高	t _{PZH}	C _L =100pF		30		ns	
发送使能开启延时输出为低	t _{PZL}	C _L =100pF		30		ns	
发送使能关闭延时输出为高	$t_{\mathtt{PHZ}}$	C _L =100pF		90		ns	
发送使能关闭延时输出为低	$t_{\scriptscriptstyle{PLZ}}$	C _L =100pF		100		ns	
13-11 11 46 75-1	$t_{\scriptscriptstylePLH}$			60			
接收传输延时	$t_{\mathtt{PHL}}$	C _L =15pF		40		ns	
接收传输失真	t_{PDS}	$C_L=15pF$, $\mid t_{PLH}-t_{PHL}\mid$		20		ns	
接收使能开启延时输出为高	t _{PZH}	C _L =15pF		50		ns	
接收使能开启延时输出为低	t _{PZL}	C _L =15pF		60		ns	
接收使能关闭延时输出为高	$t_{\mathtt{PHZ}}$	C _L =15pF		50		ns	
接收使能关闭延时输出为低	$t_{\mathtt{PLZ}}$	C _L =15pF		60		ns	
最高数据速率	f_{MAX}				10	Mbps	

电气参数(VCC=3.3V)

直流特性

Vcc = 3.3V,T_A=+25°C,除非特别说明。

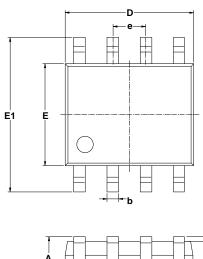
参数	符号	测试	条件	最小值	典型值	最大值	单位
		无负载			2.8		
发送差分输出	V _{OD}	R _L =100Ω			1.35		V
差分输出电压幅度失配	$\Delta V_{ ext{OD}}$	R _L =100Ω			±1		V
差分输出共模电压	Voc	R _L =100Ω			1.65		V
差分输出共模电压变化	ΔV _{oc}	R _L =100Ω			±0.1		V
高电平逻辑输入电压	V _{IH}	V _{DE} , V _{RE} , V _{DI}		2.0			V
低电平逻辑输入电压	VIL	V _{DE} , V _{RE} , V _{DI}				0.7	V
逻辑端口输入电流	I _{IN,LOGIIC}	V_{DE} , $V_{\overline{RE}}$, V_{DI}				±2	μΑ
V 4N VIII - 4A N . I . N	I _{IN,BUS}	V _{DE} =0V,	V _{IN} =3.3V		40		
总线端口输入电流		V _{CC} =3.3V	V _{IN} =0V		60		μΑ
接收差分阈值电压	V _{TH}	-7V≤V _{CM} ≤12V		-0.2		0	V
接收输入迟滞	ΔV _{TH}	V _{CM} =0V			25		mV
接收高电平输出电压	V _{OH}	I _{OUT} =-1.5mA, V _{ID}	=200mV	V _{CC} -0.4			V
接收低电平输出电压	Vol	I _{OUT} =-1.5mA, V _{ID}	=-200mV			0.4	V
接收三态(高阻)输出电流	I _{ZR}	V _{CC} =3.3V, 0V≤V _C	ouт≤V _{CC}		±1		μΑ
接收输入阻抗	R _{IN}	-7V≤VCM≤12V			100		kΩ
L Net L Ne		无负载,					
电源电流	Icc	$V_{RE} = V_{DE} = V_{DI} = 0V$	或 Vcc		0.2		mA
		V _{CC} =3.3V,		50			
发送输出短路电流	I _{os}	A 或 B 对 GND	A 或 B 对 GND 短接				mA
接收输出短路电流	I _{OSR}	0V≤V _{RO} ≤V _{CC}			±45		mA

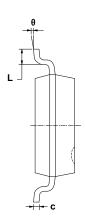


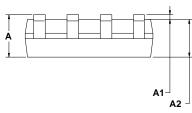
开关特性

Vcc = 3.3V, T_A=+25°C, 除非特别说明。

参数	符号	测试条件	最小值	典型值	最大值	单位
43.34 14.45 77.0 l	t _{PLH}			22		
发送传输延时	t PHL	R _L =27Ω, C _{LA} =C _{LB} =15pF		22		ns
发送传输失真	t _{PDS}	R _L =27Ω, C _{LA} =C _{LB} =15pF		0		ns
发送使能开启延时输出为高	t _{PZH}	R _L =110Ω, C _{LA} =C _{LB} =15pF		45		ns
发送使能开启延时输出为低	t PZL	R _L =110Ω, C _{LA} =C _{LB} =15pF		45		ns
发送使能关闭延时输出为高	t pHZ	R _L =110Ω, C _{LA} =C _{LB} =15pF		40		ns
发送使能关闭延时输出为低	t _{PLZ}	R _L =110Ω, C _{LA} =C _{LB} =15pF		40		ns
+ ÷ 11- 11- 11- 11-	t PLH			65		
接收传输延时	t PHL	C _L =15pF		75		ns
接收传输失真	t _{PDS}	C _L =15pF, t _{PLH} –t _{PHL}		10		ns
接收使能开启延时输出为高	t PZH	C _L =15pF		25		ns
接收使能开启延时输出为低	t _{PZL}	C _L =15pF		25		ns
接收使能关闭延时输出为高	t PHZ	C _L =15pF		25		ns
接收使能关闭延时输出为低	t _{PLZ}	C _L =15pF		25		ns
最高数据速率	f _{MAX}	Vcc=3.3V			6	Mbps

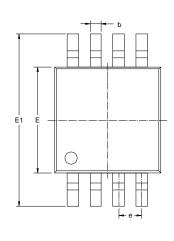

典型应用图

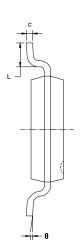


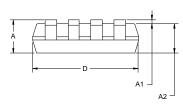

- 1. R1 的阻值范围为(从机数量+1) k 到(从机数量+1) x10k 之间。
- 2. R2 的阻值范围为 100 到 1k 之间。R2 一般只需要在两端最远的 MS3485 上接一颗,用于减少信号反射,不是在所有主机的 AB 线上接 R2。
- 3. 接大量从机时,需要使用菊花链结构,不能使用拓扑结构。
- 4. 建议使用双绞线,且建议最远距离不要超过 1.5km。

封装外形图

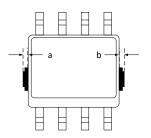
SOP8



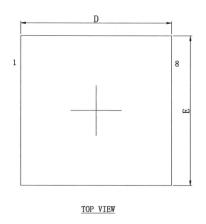

ht. 5	尺寸(毫米)	尺寸 (英寸)		
符号	最小值	最大值	最小值	最大值	
А	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.200	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
e	1.27(BSC)		0.050(BSC)		
L	0.400	1.270	0.016	0.050	
θ	0 º	8 º	O ō	8 º	

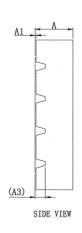

注: 在封装尺寸外,允许 a、b 同时有最大 0.15mm 的废胶尺寸。

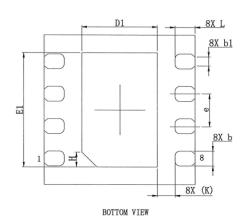
MSOP8



*	尺寸(毫米)	尺寸(英寸)		
符号	最小值	最大值	最小值	最大值	
А	0.820	1.100	0.032	0.043	
A1	0.020	0.150	0.001	0.006	
A2	0.750	0.950	0.030	0.037	
b	0.250	0.380	0.010	0.015	
С	0.090	0.230	0.004	0.009	
D	2.900	3.100	0.114	0.122	
E	2.900	3.100	0.114	0.122	
E1	4.750	5.050	0.187	0.199	
e	0.650BSC		0.026BSC		
L	0.400	0.800	0.016	0.031	
θ	Oō	6₀	Oō	6₅	


注: 在封装尺寸外,允许 a、b 同时有最大 0.15mm 的废胶尺寸。


示意图如下:以 SOP8 封装为例。



DFN8

	尺寸(毫米)				
符号	最小值	典型值	最大值		
А	0.7	0.75	0.8		
A1	0	0.02	0.05		
А3		0.203 REF			
b	0.25	0.3	0.35		
b1	0.18 REF				
D	2.9	3.0	3.1		
E	2.9	3.0	3.1		
e		0.65 BSC			
D1	1.4	1.5	1.6		
E1	2.2	2.3	2.4		
L	0.3	0.4	0.5		
К		0.35 REF			
Н	0.3 REF				

印章与包装规范

1. 印章内容介绍

MS3485D XXXXXX

产品型号: MS3485、MS3485M、MS3485DN、MS3485D

生产批号: XXXXXX、XXXXXXX

2. 印章规范要求

采用激光打印,整体居中且采用 Arial 字体。

3. 包装规范说明

型号	封装形式	颗/卷	卷/盒	颗/盒	盒/箱	颗/箱
MS3485	SOP8	2500	1	2500	8	20000
MS3485M	MSOP8	3000	1	3000	8	24000
MS3485DN	DFN8	3000	10	30000	4	120000

型号	封装形式	颗/管	管/盒	颗/盒	盒/箱	颗/箱
MS3485D	DIP8	50	40	2000	10	20000

声明

- 瑞盟保留说明书的更改权,恕不另行通知!客户在下单前应获取最新版本资料,并验证相关信息 是否完整。
- 在使用瑞盟产品进行系统设计和整机制造时,买方有责任遵守安全标准并采取相应的安全措施, 以避免潜在失败风险可能造成的人身伤害或财产损失!
- 产品提升永无止境,本公司将竭诚为客户提供更优秀的产品!

MOS电路操作注意事项

静电在很多地方都会产生,采取下面的预防措施,可以有效防止 MOS 电路由于受静电放电的影响而引起的损坏:

- 1、操作人员要通过防静电腕带接地。
- 2、设备外壳必须接地。
- 3、装配过程中使用的工具必须接地。
- 4、必须采用导体包装或抗静电材料包装或运输。

+86-571-89966911

杭州市滨江区伟业路 1 号 高新软件园 9 号楼 701 室

http://www.relmon.com