13.56MHz 非接触读卡器 IC

1 产品概述

FSV9510是一款应用广泛的非接触读卡器芯片, 集成了在 13.56MHz 下的多种非接触 通信方式和协议, 具有很高的技术集成度。

2 功能特性

- ◆ 读写器模式支持 ISO/IEC 14443A 标准
- ◆ 读写器模式支持 ISO/IEC 14443B 标准
- ◆ 读写器模式支持 FeliCa 规范
- ◆ 支持 ISO/IEC 18092 NFCIP-1 标准
- ◆ 模拟卡模式支持 ISO/IEC 14443A 和 FeliCa 标准
- ◆ 高度集成的 解调和解码模拟电路
- ◆ 只需很少的外部器件,即可将输出驱动连接至天线
- ◆ 在读写器模式下,典型操作距离最高可达 90mm,具体取决于天线设计和电源
- ◆ 在 NFCIP-1 模式下,通讯距离可达 50mm,具体取决于天线设计和电源
- ◆ 支持的主机接口
 - ➤ SPI 接口,速率最高 10Mbit/s
- ◆ 64 字节 FIFO 缓冲器用于接收和发送
- ◆ 灵活的中断模式
- ◆ 低功耗的硬件掉电模式
- ◆ 支持软件掉电模式
- ◆ 支持 LPCD 功能
- ◆ 可编程定时器
- ◆ 内部振荡器,连接 27.12MHz 晶体
- ◆ 2.5V-5V 宽范围电源电压
- ◆ CRC 协处理器
- ◆ 可编程 I/0 管脚
- ◆ 内部自检功能

3 应用领域

应用领域广泛,在考勤签到、门禁控制、公共交通、食堂就餐、水电气充值、便携式手持设备、各种会员系统等多方面的综合应用,有很强的系统应用扩展性。

4 引脚配置和功能

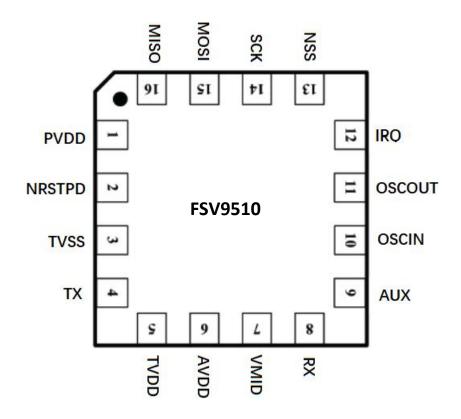


图 1 QFN16 封装管脚图

表 1 管脚说明

管脚号	管脚名	类型	管脚描述
1	PVDD	Р	10 口电源
2	NRSTPD	I	复位脚:为低电平时,内部功能模块包括振荡器均停止工作,输入管脚与外部断开。 该管脚上的上升沿可用来开启内部复位相位。
3	TVSS	G	发送器 TX 输出级的地
4	TX	0	载波发送管脚
5	TVDD	Р	发送驱动器电源
6	AVDD	Р	模拟电源
7	VMID	Р	内部参考电压
8	RX	I	RF 信号输入
9	AUX	0	测试脚
10	OSCIN	I	晶振反相放大器输入; 也是外部时钟的输入。 该管脚还可用作外部时钟 (fosc=27.12MHz)的输入
11	OSCOUT	0	晶振反相放大器输出

FSV9510 规格书

12	IRQ	0	中断请求输出: 指示一个中断事件
13	NSS	Ι	SPI 接口片选脚,低有效
14	SCK	Ι	SPI 接口时钟脚
15	MOSI	I	SPI 接口数据输入脚
16	MISO	0	SPI 接口数据输出脚

5 功能描述

FSV9510工作在读写器模式时, 其传输模块支持 ISO/IEC 14443 A 和ISO/IEC 14443 B 标准, 并可采用多种传输速率和调制方法。

FSV9510支持以下几种工作模式:

- •支持 ISO/IEC 14443A, ISO/IEC 14443B 和 FeliCa 的读写器模式
- •支持 ISO/IEC 14443A 和 FeliCa 的卡操作模式
- •支持 NFCIP-1 模式

这些模式支持不同的传输速率和调制方法, 详见相关标准。

6 MCU 接口

FSV9510支持 SPI 接口.

7 中断请求系统

FSV9510通过置位寄存器 Status1Reg 的 IRq 位或激活 IRQ 管脚来指示中断。IRQ 管脚的信号可 使主机使用其中断处理机制来处理。这使得软件执行效率大为提高。

7.1 中断源概述

表 22 列出了可使用的中断位,相应的中断源及中断产生的条件。ComlrqReg 寄存器的 TimeHRq 中断位指出一个由定时器产生的中断,当定时器从 1 减到 0 时,此中断位被置位。

ComlrqReg 寄存器的 TxIRq 位表明发送器发送完成。如果状态从发送数据变到发送结束帧,则发送器自动置位相应中断位。CRC 协处理器在处理完 FIFO 緩冲器里所有的数据后置位 DivIrqReg 寄存器的 CRCIRq 位,通过 CRCReady 位置 1 来指示。

ComlrqReg 寄存器的 RxIRq 位表明检测到接收数据的结束。如果执行完一个指令且 CommandReg 寄存器的 Command[3:0]位的内容变为空闲时,则 ComlrqReg 寄存器的 IdlelRq 位被 置位。

当 HiAlert 位置 1 且 ComlrqReg 寄存器的 HiAlertIRq 位置位时,表明 FIFO 緩冲器已经达到 WaterLevel [5:0]位指示的长度。

当 LoAlert 位置 1 且 ComlrqReg 寄存器的 LoAlertIRq 位置位时,表明 FIFO 緩冲器已经达到 WaterLevel [5:0]位指示的长度。

ComlrqReg 寄存器的 ErrIRq 位表示非接触式 UART 在发送或接收过程中检测到一个错误。当 ErrorReg 寄存器中的任何一个位置 1 时都表明产生了错误。

中断标志	中断源	触发动作
TimerIRq	定时器单元	定时器从 1 计到 0
TxIRq	发送器	数据发送结束
CRCIRq	CRC 协处理器	FIFO 緩冲器的数据处理完毕
RxIRq	接收器	数据接收结束
IdlelRq	ComIRQReg 寄存器	指令执行结束
HiAlertIRq	FIFO 緩冲器	HFO 緩冲器快溢出时
LoAlertIRq	FIFO 緩冲器	HFO 緩冲器快为空时
ErrIRq	非接触式UART	检测到一个错误

表 22 中断源

8 定时器单元

FSV9510有一个定时器单元,外部主机可以使用它来处理定时任务。定时器可使用如下所示的任何一个定时/计数配置:

- •超时计数器
- •看门狗计数器
- 秒表
- •可编程一次触发
- •周期性触发器

定时器单元可用来测量两个事件之间的时间间隔或指示某段时间后指定事件的发生。它可由下文解释的事件来触发。定时器不会影响任何内部事件,例如,数据接收过程中的定时器超时并不会影响接收过程的自动处理。此外,一些与定时器相关的位可以用来产生中断。

定时器的时钟振荡频率为 13. 56MHz, 它是 27. 12MHz 的石英晶体振荡器分频得到的。定时器 包括两个阶段: 预分频和计数。

预分频器(TPrescaler)是一个 12 位计数器。它的重装值(TReloadVal_Hi [7:0] 和 TReloadVal_Lo[7:0])在 0 到 4095 之间,由 TModeReg 寄存器的 TPrescaler_Hi [3:0]位和 TPrescalerReg 寄存器的 TPrescaler Lo [7:0]来设置。

计时器中的 16 位重装值在寄存器 TReloadReg 中定义,取值范围为 0 到 65535。定时器的当前值在寄存器 TCouterValReg 中显示。

当计数值达到 0 时, 自动产生一个中断, 通过置位 CommonIRQReg 寄存器的 TimerIRQ 位来指示。如果使能,IRQ 管脚就会出现此中断信号。TimerIRQ 位可由主机来 置位和复位。根据配置, 定时器可以在计数到 0 时停止运行,或将 TReloadReg 寄存器 的值作为初始值重新启动计数。

定时器的状态由 StatusIReg 寄存器的 TRunning 位来指示。

定时器的启动和停止可分别由 ControlReg 寄存器的 TStartNow 和 TstopNow 位来控制。

定时器还可通过设置 TModeReg 寄存器的 TAuto 位为 1 来自动激活,以满足特定的协议要求。

定时过程中的延迟时间为重装值加 1。

例如:为了得到一个 25us 的延迟,需要计数 339 个时钟周期且 TPrescaler 的值为 169。该配置使计数器每 25us 周期计数到 65535。

9 节电模式

9.1 硬掉电模式

当管脚 NRSTPD 为低电平时进入硬掉电模式。该模式下,关闭包括振荡器在内的所有内部电源。所有数字输入缓冲器和输入端分离,并关闭其功能(NRSTPD 管脚除外),输出管脚也保持在高电平或低电平。

9.2 软掉电模式

CommandReg 寄存器的 PowerDown 位设为 1 后立刻进入软掉电模式。关闭包括振荡器缓冲器在内的所有内部电源。但是数字输入缓冲器不和输入端分离,且功能保持不变。数字输出管脚的 状态不变。

在软掉电期间,所有的寄存器的值, FIFO 的值和配置都保持不变。

在设置 PowerDown 位为 0 后,经过 1024 个时钟周期退出软掉电模式。PowerDown 位设置为 0 并不能立刻将其清除,而是在退出软掉电模式后自动清零。

如果使用了内部振荡器,必须考虑它是由管脚 AVDD 提供的电源,必须经过一段时间 (Tosc)后,振荡器才能稳定,且内部逻辑才能检测到时钟周期。在使用串行 UART 通信时,推荐先发送 55h 给 TSC1907,振荡器必须保持稳定后才能再进一步访问寄存器。为了确保这一点,直到 TSC1907 回应上一个寄存器内容为地址 0 的读命令时才执行对地址 0 的读访问。这样说明 TSC1907 可以执行进一步的操作。

9.3 发送器掉电模式

发送器掉电模式切断内部天线驱动器来关闭 RF 场,可以通过设置 TXControlReg 寄存器的 TXIRFEn 或 TX2RFEn 位为 0 来实现。

9. 4 LPCD 模式

FSV9510内部集成低功耗自动寻卡与定时唤醒功能,寻卡时间间隔与寻卡时间均可编程,寻卡过程无需 MCU 操作,寻卡成功后可以中断唤醒 MCU。LPCD 功能在低功耗的同时,又实现了检卡,兼顾了功耗与功能。

10 振荡器电路

FSV9510的时钟用作系统的编码器和解码器的时钟基准。因此,时钟频率的稳定性是保证系统良好性能的重要因素。为了获得最佳性能,必须尽可能减少时钟抖动。最好采用一个带有推荐电路的内部振荡緩冲器。

如果采用外部时钟源,时钟信号必须连接至 OSCIN 管脚。在这种情况下,特别要注意验证时钟的占空比,时钟抖动以及时钟信号的质量。

12 FSV9510寄存器

12.1 寄存器位

根据寄存器功能的不同,寄存器的访问条件也多种多样。原则上具有相同特性的位归 为同组。表 23 描述了寄存器的访问条件。

表 23 寄存器位的特性

缩写	特性	描述
r/w		微处理器可以对这些位进行读和写操作,由于它们仅用于控制,其内容不会受到内部 状态机的影响。例如,微处理器可以对寄存器 ComlEnReg 进行读或写操作,但内部 状态机对该寄存器只能读取而不能改变它们的值。
dy	动态	微处理器可以对这些位进行读或写操作,不过内部状态机同样可以改变这些寄存器的值。例如,寄存器 CommandReg 在指令执行后自动改变其内部的某些值。
r	│ 只读	这些寄存器的值只能由内部的状态决定。例如 CRCReady 位只能表示内部的状态,外部或内部状态机都不能改变它的值。
w	只写	这些寄存器的位读结果总是 0。
RFU	-	这些寄存器是被保留的以备将来之用,在写操作时最好将这些 寄存器 都写为 0。
RFT	-	这些寄存器是被保留的以备将来之用或是为了生产测试。

12.2 寄存器

表 24 寄存器总览

地址	寄存器名称	功能
Page 0 : i	命令和状态寄存器组	
0h	PageReg	页选择寄存器
1h	CommandReg	掉电和命令寄存器
2h	ComlEnReg	中断请求控制寄存器
3h	DivlEnReg	中断请求控制寄存器
4h	ComlrqReg	中断请求位寄存器
5h	DivIrqReg	中断请求位寄存
6h	ErrorReg	指令执行的错误状态寄存器
7h	StatuslReg	通信状态寄存器
8h	Status2Reg	接收器和发送器状态寄存器
9h	FIFODataReg	64 字节 FIFO 缓冲器
Ah	FIFOLevelReg	FIFO 缓冲器已存储字节的数量寄存器
Bh	WaterLevelReg	FIFO 缓冲器溢出和空警告寄存器

ChControlReg其它项控制寄存器DhBitFramingReg面向位的帧的调节寄存器EhCollReg检查产生位冲突的第一个位的地址FhRFU保留Page 1: 命令寄存器组0hPageReg页选择寄存器1hModeReg定义发送和接收通用模式的寄存器2hTxModeReg定义发送过程的数据传输速率和结构的寄存器3hRxModeReg定义接收过程中的数据传输速率和结构的寄存器4hTxControlReg控制天线驱动器管脚 TX1 和 TX2 的寄存器5hTxAutoReg控制天线驱动器设置的寄存器6hTxSelReg选择天线驱动器的内部信号源的寄存器7hRxSelReg选择问解码器的设置的寄存器8hRxThresholdReg选择位解码器的阈值的寄存器9hDemodReg定义解调器的设置的寄存器AhFelNFC1Reg定义接收数据包的有效长度范围的寄存器ChMifNFCReg控制ISO/IEC 14443A 和NFC 目标模式在 106kbit 透的通信的寄存器DhManualRCVReg允许手动细调内部接收器的寄存器					
Eh CollReg 检查产生位冲突的第一个位的地址 Fh RFU 保留 Page 1:命令寄存器组 Oh PageReg 页选择寄存器 1h ModeReg 定义发送和接收通用模式的寄存器 2h TxModeReg 定义发送过程的数据传输速率和结构的寄存器 3h RxModeReg 定义接收过程中的数据传输速率和结构的寄存器 4h TxControlReg 控制天线驱动器管脚 TX1 和 TX2 的寄存器 5h TxAutoReg 控制天线驱动器设置的寄存器 6h TxSelReg 选择天线驱动器的内部信号源的寄存器 7h RxSelReg 选择内部接收器的设置的寄存器 8h RxThresholdReg 选择位解码器的阈值的寄存器 9h DemodReg 定义解调器的设置的寄存器 8h FelNFC1Reg 定义接收数据包的有效长度范围的寄存器 Bh FelNFC2Reg 定义接收数据包的有效长度范围的寄存器 控制ISO/IEC 14443A 和NFC 目标模式在 106kbit 退的通信的寄存器					
Fh RFU 保留 Page 1:命令寄存器组 Oh PageReg 页选择寄存器 1h ModeReg 定义发送和接收通用模式的寄存器 2h TxModeReg 定义发送过程的数据传输速率和结构的寄存器 3h RxModeReg 定义接收过程中的数据传输速率和结构的寄存器 4h TxControlReg 控制天线驱动器管脚 TX1 和 TX2 的寄存器 5h TxAutoReg 控制天线驱动器设置的寄存器 6h TxSelReg 选择天线驱动器的内部信号源的寄存器 7h RxSelReg 选择入线驱动器的内部信号源的寄存器 8h RxThresholdReg 选择向部接收器的设置的寄存器 9h DemodReg 定义解调器的设置的寄存器 9h DemodReg 定义解调器的设置的寄存器 Ah FelNFC1Reg 定义接收数据包的有效长度范围的寄存器 Bh FelNFC2Reg 定义接收数据包的有效长度范围的寄存器 控制ISO/IEC 14443A 和NFC 目标模式在 106kbit 退的通信的寄存器					
Page 1:命令寄存器组 Oh PageReg 页选择寄存器 1h ModeReg 定义发送和接收通用模式的寄存器 2h TxModeReg 定义发送过程的数据传输速率和结构的寄存器 3h RxModeReg 定义接收过程中的数据传输速率和结构的寄存器 4h TxControlReg 控制天线驱动器管脚 TX1 和 TX2 的寄存器 5h TxAutoReg 控制天线驱动器设置的寄存器 6h TxSelReg 选择天线驱动器的内部信号源的寄存器 7h RxSelReg 选择内部接收器的设置的寄存器 8h RxThresholdReg 选择位解码器的阈值的寄存器 9h DemodReg 定义解调器的设置的寄存器 Ah FelNFC1Reg 定义接收数据包的有效长度范围的寄存器 Bh FelNFC2Reg 定义接收数据包的有效长度范围的寄存器 控制ISO/IEC 14443A 和NFC 目标模式在 106kbit 退的通信的寄存器					
OhPageReg页选择寄存器1hModeReg定义发送和接收通用模式的寄存器2hTxModeReg定义发送过程的数据传输速率和结构的寄存器3hRxModeReg定义接收过程中的数据传输速率和结构的寄存器4hTxControlReg控制天线驱动器管脚 TX1 和 TX2 的寄存器5hTxAutoReg控制天线驱动器设置的寄存器6hTxSelReg选择天线驱动器的内部信号源的寄存器7hRxSelReg选择内部接收器的设置的寄存器8hRxThresholdReg选择位解码器的阈值的寄存器9hDemodReg定义解调器的设置的寄存器AhFelNFC1Reg定义接收数据包的有效长度范围的寄存器BhFelNFC2Reg定义接收数据包的有效长度范围的寄存器控制ISO/IEC 14443A和NFC 目标模式在 106kbit 透的通信的寄存器					
1hModeReg定义发送和接收通用模式的寄存器2hTxModeReg定义发送过程的数据传输速率和结构的寄存器3hRxModeReg定义接收过程中的数据传输速率和结构的寄存器4hTxControlReg控制天线驱动器管脚 TX1 和 TX2 的寄存器5hTxAutoReg控制天线驱动器设置的寄存器6hTxSelReg选择天线驱动器的内部信号源的寄存器7hRxSelReg选择内部接收器的设置的寄存器8hRxThresholdReg选择位解码器的阈值的寄存器9hDemodReg定义解调器的设置的寄存器AhFelNFC1Reg定义接收数据包的有效长度范围的寄存器BhFelNFC2Reg定义接收数据包的有效长度范围的寄存器ChMifNFCReg控制ISO/IEC 14443A 和NFC 目标模式在 106kbit 透的通信的寄存器					
2hTxModeReg定义发送过程的数据传输速率和结构的寄存器3hRxModeReg定义接收过程中的数据传输速率和结构的寄存器4hTxControlReg控制天线驱动器管脚 TX1 和 TX2 的寄存器5hTxAutoReg控制天线驱动器设置的寄存器6hTxSelReg选择天线驱动器的内部信号源的寄存器7hRxSelReg选择内部接收器的设置的寄存器8hRxThresholdReg选择位解码器的阈值的寄存器9hDemodReg定义解调器的设置的寄存器AhFelNFC1Reg定义接收数据包的有效长度范围的寄存器BhFelNFC2Reg定义接收数据包的有效长度范围的寄存器ChMifNFCReg控制ISO/IEC 14443A 和NFC 目标模式在 106kbit 过的通信的寄存器					
3hRxModeReg定义接收过程中的数据传输速率和结构的寄存器4hTxControlReg控制天线驱动器管脚 TX1 和 TX2 的寄存器5hTxAutoReg控制天线驱动器设置的寄存器6hTxSelReg选择天线驱动器的内部信号源的寄存器7hRxSelReg选择内部接收器的设置的寄存器8hRxThresholdReg选择位解码器的阈值的寄存器9hDemodReg定义解调器的设置的寄存器AhFelNFC1Reg定义接收数据包的有效长度范围的寄存器BhFelNFC2Reg定义接收数据包的有效长度范围的寄存器ChMifNFCReg控制ISO/IEC 14443A 和NFC 目标模式在 106kbit 退的通信的寄存器					
4hTxControlReg控制天线驱动器管脚 TX1 和 TX2 的寄存器5hTxAutoReg控制天线驱动器设置的寄存器6hTxSelReg选择天线驱动器的内部信号源的寄存器7hRxSelReg选择内部接收器的设置的寄存器8hRxThresholdReg选择位解码器的阈值的寄存器9hDemodReg定义解调器的设置的寄存器AhFelNFC1Reg定义接收数据包的有效长度范围的寄存器BhFelNFC2Reg定义接收数据包的有效长度范围的寄存器ChMifNFCReg控制ISO/IEC 14443A 和NFC 目标模式在 106kbit 退的通信的寄存器					
5hTxAutoReg控制天线驱动器设置的寄存器6hTxSelReg选择天线驱动器的内部信号源的寄存器7hRxSelReg选择内部接收器的设置的寄存器8hRxThresholdReg选择位解码器的阈值的寄存器9hDemodReg定义解调器的设置的寄存器AhFelNFC1Reg定义接收数据包的有效长度范围的寄存器BhFelNFC2Reg定义接收数据包的有效长度范围的寄存器ChMifNFCReg控制ISO/IEC 14443A 和NFC 目标模式在 106kbit 退的通信的寄存器					
6h TxSelReg 选择天线驱动器的内部信号源的寄存器 7h RxSelReg 选择内部接收器的设置的寄存器 8h RxThresholdReg 选择位解码器的阈值的寄存器 9h DemodReg 定义解调器的设置的寄存器 Ah FelNFC1Reg 定义接收数据包的有效长度范围的寄存器 Bh FelNFC2Reg 定义接收数据包的有效长度范围的寄存器 Ch MifNFCReg 控制ISO/IEC 14443A 和NFC 目标模式在 106kbit 退的通信的寄存器					
7h RxSelReg 选择内部接收器的设置的寄存器 8h RxThresholdReg 选择位解码器的阈值的寄存器 9h DemodReg 定义解调器的设置的寄存器 Ah FelNFC1Reg 定义接收数据包的有效长度范围的寄存器 Bh FelNFC2Reg 定义接收数据包的有效长度范围的寄存器 Ch MifNFCReg 控制ISO/IEC 14443A 和NFC 目标模式在 106kbit 退的通信的寄存器					
8h RxThresholdReg 选择位解码器的阈值的寄存器 9h DemodReg 定义解调器的设置的寄存器 Ah FelNFC1Reg 定义接收数据包的有效长度范围的寄存器 Bh FelNFC2Reg 定义接收数据包的有效长度范围的寄存器 Ch MifNFCReg 控制ISO/IEC 14443A 和NFC 目标模式在 106kbit 退的通信的寄存器					
9hDemodReg定义解调器的设置的寄存器AhFelNFC1Reg定义接收数据包的有效长度范围的寄存器BhFelNFC2Reg定义接收数据包的有效长度范围的寄存器ChMifNFCReg控制ISO/IEC 14443A 和NFC 目标模式在 106kbit 退的通信的寄存器					
Ah FelNFC1Reg 定义接收数据包的有效长度范围的寄存器 Bh FelNFC2Reg 定义接收数据包的有效长度范围的寄存器 控制ISO/IEC 14443A 和NFC 目标模式在 106kbit 退的通信的寄存器					
Bh FelNFC2Reg 定义接收数据包的有效长度范围的寄存器 Ch MifNFCReg 控制ISO/IEC 14443A 和NFC 目标模式在 106kbit 退的通信的寄存器					
Ch MifNFCReg 控制ISO/IEC 14443A 和NFC 目标模式在 106kbit 退的通信的寄存器					
Ch MitNFCReg 的通信的寄存器					
的通信的寄存器	率下				
Dh ManualRCVReg 允许手动细调内部接收哭的客友哭					
Eh TypeBReg 配置 ISO/IEC 14443B 的寄存器					
Fh SerialSpeedReg 选择串行 UART 接口的速率寄存器					
Page 2:配置寄存器组					
Oh PageReg 页选择寄存器					
1h CRCResultReg 显示 CRC 计算的 MSB 和LSB 值					
2h					
3h GsNOffReg 驱动器关闭时,天线驱动管脚 TX1 和TX2 上用于调电导寄存器	制的				
4h ModWidthReg 控制调制宽度的设置寄存器					
5h TxBitPhaseReg 调整 106kbit 速率下 TX 位的相位寄存器					
6h RFCfgReg 配置接收器增益和 RF 电压的寄存器					
7h GsNOnReg 驱动器打开时,天线驱动管脚 TX1 和TX2 上用于调电导寄存器					
	制的				
8h CWGsPReg 在无调制期间,天线驱动管脚 TX1 和TX2 上用于调电导寄存器					
8h 313 313 113	制的				
电导寄存器 ModGsPReg 在调制期间,天线驱动管脚 TX1 和TX2 上用于调制	制的				

Ch	TReloadReg	定义 16 位定时器的重载值寄存器		
Dh				
Eh	TCounterValReg	16 位定时器的计数值寄存器		
Fh				
Page 3:	则试寄存器组			
0h	PageReg	页选择寄存器		
1h	TestSel1Reg	通用测试信号配置寄存器		
2h	TestSel2Reg	通用测试信号的配置和 PRBS 控制寄存器		
3h	TestPinEnReg	使能 D0-D7 的输出驱动器(注:仅用于串行接口)		
4h	TestPinValueReg	定义管脚 D0-D7 用作 I/0 总线时的值		
5h	TestBusReg	内部测试总线的状态寄存器		
6h	AutoTestReg	数字自检寄存器		
7h	VersionReg	软件版本寄存器		
8h	AnalogTestReg	管脚 AUX1 和 AUX2 输出寄存器		
9h	TestDAC1Reg	TestDAC1 的测试值寄存器		
Ah	TestDAC2Reg	TestDAC2 的测试值寄存器		
Bh	TestADCReg	ADC 中 I 和Q 通道寄存器		
Ch-Fh	RFT	保留用于产品测试		

12.3 LPCD 寄存器

地址	寄存器名称	功能
00h	LPCD_ContrlReg	LPCD 控制寄存器
01h	LPCD_IMAX	LPCD 最大 I 值寄存器
02h	LPCD_IMIN	LPCD 最小 I 值寄存器
03h	LPCD_QMAX	LPCD 最大Q 值寄存器
04h	LPCD_QMIN	LPCD 最小Q 值寄存器
05h	LPCD_RI	LPCD 检测 I 值寄存器
06h	LPCD_RQ	LPCD 检测Q 值寄存器
07h	LFO_Trim	低功耗振荡校准寄存器
08h	HF_TIME_CNT_H	检测时长高位寄存器
09h	HF_TIME_CNT_L	检测时长低位寄存器
0Ah	LF_TIME_CNT_H	检测间隔高位寄存器
0Bh	LF_TIME_CNT_L	检测间隔低位寄存器

13 指令集

13.1 概述

FSV9510的运行由能够执行一系列指令的内部状态机决定的。通过把指令代码写入 CommandReg 寄存器来执行相应的指令。

13. 2 通用特性

- •除 Transceive 指令外,需要输入数据流或 (数据字节流)的指令会立即处理 FIF0 缓冲器的数据。 执行 Transceive 指令时,通过设置 BitFraming 寄存器的 StartSend 位来启动传送器。
- •需要预先设置参数的指令只有当从FIFO 缓冲器中接收到正确数量的参数时才开始运行。
- 当指令启动时 FIFO 缓冲器不会立即清零,可以先把指令参数和数据写进 FIFO 缓冲器后再启动指令。
 - ·新写进 CommandReg 寄存器的指令将中断当前正在执行的指令。

13.3 指令总览

表 25 指令总览

指令	指令代码	含义
Idle	0000	无动作;取消当前执行的指令
Config	0001	用于配置 FeliCa 和NFCIP-1 通信
Generate RandomID	0010	产生一个 10 字节的随机ID 数据
CalcCRC	0011	启动 CRC 协处理器
Transmit	0100	发送 FIFO 缓冲器的数据
NoCmdChange	0111	不中断正在执行的指令,用来修改 CommandReg 寄存器中不影响命令执行的 一些位,例如 PowerDown 位
Receive	1000	启动接收器电路
Transceive	1100	发送 FIFO 缓冲器中的数据到天线并在发送后自动启动接收器
AutoColl	1101	处理 FeliCa 轮询(仅卡工作模式)和ISO/IEC 14443A 防冲突 C 仅卡工作模式)
SoftReset	1111	软复位

14 电气参数

14.1 极限参数

表 26 极限参数

参数	最小值	最大值	单位
V_{DDA} , V_{DDD} , P_{VDD} , S_{VDD}	-0.5	+4.0	V
TVDD	-0.5	+5.5	V
存储温度	-40	85	°C
ESD(HBM)	-	2000	V
ESD(MM)	-	200	V

14.2 主要参数指标

表 27 主要参数指标

符号	参数	条件	最小值	典型值	最大值	单位
V _{DDA}	模拟电源	$V_{\text{PVDD}} \leq V_{\text{DDA}} = V_{\text{DDD}} \leq V_{\text{TVDD}}$	2.5	3.3	3.6	V
V _{DDD}	数字电源	$V_{\text{PVDD}} \leq V_{\text{DDA}} = V_{\text{DDD}} \leq V_{\text{TVDD}}$	2.5	3.3	3.6	V
V _{TVDD}	TVDD 电源	$V_{\text{PVDD}} \leq V_{\text{DDA}} = V_{\text{DDD}} \leq V_{\text{TVDD}}$	2.5	3.3	5.5	V
$V_{ exttt{PVDD}}$	PVDD 电源	$V_{\text{PVDD}} \! \leq \! V_{\text{DDA}} = V_{\text{DDD}} \! \leq \! V_{\text{TVDD}}$	2.5	3.3	3.6	V
V _{SVDD}	SVDD 电源		2.5	-	3.6	V
T _{amb}	环境温度		-40	-	+85	°C
	掉电电流	$V_{DDA} = V_{DDD} = V_{TVDD} = V_{PVDD} = 3.3V$				
\mathbf{I}_{pd}		硬掉电: NRSTPD=0	-	-	5	uA
		软 掉 电 : RF 检测器打开	-	-	10	uA
$\mathbf{I}_{ extsf{DDD}}$	数字电源电流	$V_{DDD} = 3.3V$	-	1	2	mA
\mathbf{I}_{LPCD}	低功耗寻卡电流	400ms 自动寻卡间隔		10uA	20uA	uA
		V _{DDA} =3.3V; RcvOff=0	-	2	3	mA
\mathbf{I}_{DDA}	模拟电源电流	接收器关闭 V _{DDA} =3.3V; RcvOff=1	-	1	2	mA
I _{TVDD}	TVDD 电源电流	管脚 TVDD;连续波	-	60	100	mA