
CKS32F031x4 CKS32F031x6

Value-line ARM-based 32-bit MCU with 32 KB Flash, timers, ADC, communication interfaces, 2.0-3.6 V operation

Datasheet - target specification

Features

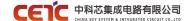
- Core: ARM[®] 32-bit Cortex[™]-M0 CPU, frequency up to 48 MHz
- Memories
 - 16 to 32 Kbytes of Flash memory
 - 4 Kbytes of SRAM with HW parity checking
- · CRC calculation unit
- · Reset and power management
 - Voltage range: V_{DD} to 3.6 V
 - Power-on/Power down reset (POR/PDR)
 - Low power modes: Sleep, Stop, Standby
- Clock management
 - 4 to 32 MHz crystal oscillator
 - 32 kHz oscillator for RTC with calibration
 - Internal 8 MHz RC with x6 PLL option
 - Internal 40 kHz RC oscillator
- Up to 39 fast I/Os
 - All mappable on external interrupt vectors
 - Up to 26 I/Os with 5 V tolerant capability
- 5-channel DMA controller
- 1 x 12-bit, 1.0 μs ADC (up to 16 channels)
 - Conversion range: 0 to 3.6 V
 - Separate analog supply from 2.4 up to 3.6 V
- Up to 9 timers
 - One 16-bit 7-channel advanced-control timer for 6 channels PWM output, with deadtime generation and emergency stop
 - One 32-bit timer One 16-bit timer, with up to 4 IC/OC, usable for IR control decoding
 - Two 16-bit timers, each with IC/OC and OCN, deadtime generation, emergency stop and modulator gate for IR control
 - One 16-bit timer with 1 IC/OC

- Independent and system watchdog timers
- SysTick timer: 24-bit downcounter
- Calendar RTC with alarm and periodic wakeup from Stop/Standby
- Communication interfaces
 - One I²C interfaces: one supporting Fast Mode Plus (1 Mbit/s) with 20 mA current sink
 - One USARTs supporting master synchronous SPI and modem control; one with auto baud rate detection
 - One SPIs (18 Mbit/s) with 4 to 16 programmable bit frame
- Serial wire debug (SWD)

Contents

	Features ·····	
1	Introduction ·····	4
2	DESCRIPTION ·····	5
3	FUNCTIONAL OVERVIEW ·····	8
	3.1 ARM [®] Cortex TM -M0 core with embedded Flash and SRAM ······	g
	3.2 Memories ······	s
	3.3 Boot modes	s
	3.4 Cyclic redundancy check calculation unit (CRC)······	6
	3.5 Power management ····································	c
	3.5.1 Power supply schemes ·······	ر c c
	3.5.2 Power supply supervisors·······	
	3.5.3 Voltage regulator	g
	3.5.4 Low-power modes·····	
	3.6 Clocks and startup	
	3.7 General-purpose inputs/outputs (GPIOs) ······	12
	3.8 Direct memory access controller (DMA)	12
	3.9 Interrupts and events ·····	12
	3.9.1 Nested vectored interrupt controller (NVIC)	12
	3.9.2 Extended interrupt/event controller (EXTI)	
	3.10 Analog to digital converter (ADC) ······	13
	3.10.1 Temperature sensor	13
	3.10.2 Internal voltage reference (V _{REFINT})	13
	3.11 Timers and watchdogs ·····	14
	3.11.1 Advanced-control timer (TIM1)	
	3.11.2 General-purpose timers (TIM2, 3, 14, 16, 17)	15
	3.11.3 Independent watchdog (IWDG)	
	3.11.4 System window watchdog (WWDG) ····································	16
	3.11.5 SysTick timer	16
	3.13 Inter-integrated circuit interfaces (I ² C)	17
	3.14 Universal synchronous/asynchronous receiver transmitters (USART)	18
	3.15 Serial peripheral interface (SPI)/ Inter-integrated sound interfacesI2S ·····	18
	3.16 Serial wire debug port (SW-DP)·····	
4		
5		
6		
	6.1 Parameter conditions ·····	
	6.1.1 Minimum and maximum values ······	
	6.1.2 Typical values ·····	
	6.1.3 Typical curves ·····	
	6.1.4 Loading capacitor ·····	
	6.1.5 Pin input voltage ·····	
	6.1.6 Power supply scheme 6.1.7 Current consumption measurement	
	6.2 Absolute maximum ratings ······	
	6.3 Operating conditions ······	
	6.3.1 General operating conditions	
	6.3.2 Operating conditions at power-up / power-down ·······	
	6.3.3 Embedded reset and power control block characteristics ·······	38
	6.3.4 Embedded reference voltage ·······	39
	6.3.5 Supply current characteristics	

	6.3.6 Wakeup time from low-power mode	47
	6.3.6 Wakeup time from low-power mode 6.3.7 External clock source characteristics 6.3.8 Internal clock source characteristics 6.3.9 PLL characteristics	48
	6.3.8 Internal clock source characteristics ······	52
	6.3.9 PLL characteristics ·····	53
	6.3.10 Memory characteristics ······	53
	6.3.11 EMC characteristics ·····	54
	6.3.12 Electrical sensitivity characteristics ······	
	6.3.13 I/O current injection characteristics	56
	6.3.14 I/O port characteristics·····	56
	6.3.14 I/O port characteristics	62
	6.3.16 12-bit ADC characteristics	63
	6.3.17 Temperature sensor characteristics ·······	67
	6.3.18 V _{BAT} monitoring characteristics ······	67
	6.3.19 Timer characteristics	67
	6.3.20 Communication interfaces ·····	68
7	PACKAGE CHARACTERISTICS ·····	
	7.1 Package mechanical data ·····	75
	7.2 Thermal characteristics ······	2/
	7.2.1 Reference document	9/
0	Principal distance	


1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of the CKS32F031xx microcontrollers.

This CKS32F031xx datasheet should be read in conjunction with the CKS32F031xx reference manual.

For information on the ARM Cortex[™]-M0 core, please refer to the Cortex[™]-M0 Technical Reference Manual, available from the www.arm.com website at the following address: http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0432c/index.html.

2 Description

The CKS32F031xx microcontroller incorporates the high-performance ARM Cortex™-M0 32-bit RISC core operating at a 48 MHz frequency, high-speed embedded memories (up to 32 Kbytes of Flash memory and up to 4 Kbytes of SRAM), and an extensive range of enhanced peripherals and I/Os. All devices offer standard communication interfaces (one I²C, one SPI, one USART), one 12-bit ADC, up to 4 general-purpose 16-bit timers and an advanced-control PWM timer.

The CKS32F031xx microcontroller operates in the -40 to +105 °C temperature range, from a 2.4 to 3.6 V power supply. A comprehensive set of power-saving modes allows the design of low-power applications.

The CKS32F031x microcontroller includes devices in four different packages ranging from 20 pins to 48 pins. Depending on the device chosen, different sets of peripherals are included. The description below provides an overview of the complete range of CKS32F031xx peripherals proposed.

These features make the CKS32F031xx microcontroller suitable for a wide range of applications such as application control and user interfaces, handheld equipment, A/V receivers and digital TV, PC peripherals, gaming platforms, e-bikes, consumer appliances, printers, scanners, alarm systems, video intercoms, and HVACs.

Table 1. CKS32F031xx device features and peripheral counts

Peri	pheral	CKS32	F031F4	CKS32	F031Gx	CKS	32F031K6	CKS32F031C6			
Flash (Kbyte	es)	16	32	16	32	16	32	16	32		
SRAM (Kby	tes)					4					
	Advanced control				-	l(16-bit)					
Timers	General purpose		4 (16-bit)								
	SPI[I ² S]					1 (32-bit)					
Comm.	I ² C		1 [1] 1								
interfaces	USART	 1									
12-bit synch	ronized ADC	1 1									
(number of		(9ext.	(9ext. +3int.) (10ext. + 3int.)								
GPIOs		1	5	25(on LQFP32) 27(on UFQFPN32)				9			
Max. CPU f	requency	48 MHz									
Operating v	oltage	2.0 to 3.6 V									
Operating to	emperature	Ambient operating temperature: -40 °C to 85 °C Junction temperature: -40 °C to 105 °C									
Packages		TSS	OP20		FPN28	L	OFP32 QFPN32	LQF	P48		

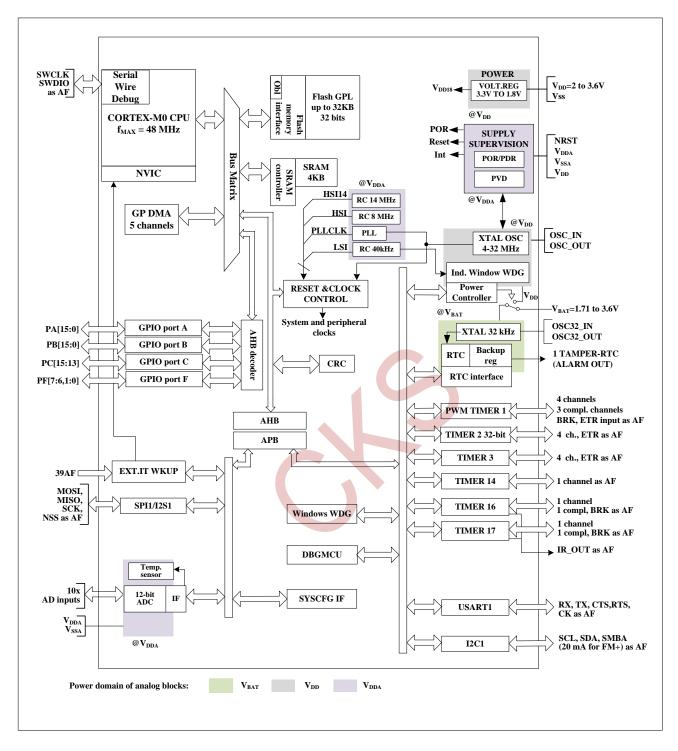


Figure 1 Block diagram

3 Functional overview

3.1 ARM® CortexTM-M0 core with embedded Flash and SRAM

The ARM Cortex[™]-M0 processor is the latest generation of ARM processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts.

The ARM Cortex[™]-M0 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices.

The CKS32F0xx family has an embedded ARM core and is therefore compatible with all ARM tools and software. *Figure 1* shows the general block diagram of the device family.

3.2 Memories

The device has the following features:

- Up to 4 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0
 wait states and featuring embedded parity checking with exception generation for failcritical applications.
- The non-volatile memory is divided into two arrays:
 - 16 to 32 Kbytes of embedded Flash memory for programs and data
 - Option bytes

The option bytes are used to write-protect the memory (with 4 KB granularity) and/or readout-protect the whole memory with the following options:

- Level 0: no readout protection
- Level 1: memory readout protection, the Flash memory cannot be read from or written to if either debug features are connected or boot in RAM is selected
- Level 2: chip readout protection, debug features (Cortex-M0 serial wire) and boot in RAM selection disabled

3.3 Boot modes

At startup, the boot pin and boot selector option bit are used to select one of three boot options:

- · Boot from User Flash
- Boot from System Memory
- Boot from embedded SRAM

The boot loader is located in System Memory. It is used to reprogram the Flash memory by using USART on pins PA14/PA15 or PA9/PA10.

3.4 Cyclic redundancy check calculation unit (CRC)

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a CRC-32 (Ethernet) polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

3.5 Power management

3.5.1 Power supply schemes

V_{DD} = 2.0 to 3.6 V: external power supply for I/Os and the internal regulator. Provided externally through V_{DD} pins. V_{DDA} = V_{DD} to 3.6 V: external analog power supply for ADC, Reset blocks, RCs and PLL. The V_{DDA} voltage level must be always greater or equal to the V_{DD} voltage level and must be provided first.

For more details on how to connect power pins, refer to Figure 11: Power supply scheme.

3.5.2 Power supply supervisors

The device has integrated power-on reset (POR) and power-down reset (PDR) circuits. They are always active, and ensure proper operation above a threshold of 2 V. The device remains in reset mode when the monitored supply voltage is below a specified threshold, $V_{POR/PDR}$, without the need for an external reset circuit.

- The POR monitors only the V_{DD} supply voltage. During the startup phase it is required that V_{DDA} should arrive first and be greater than or equal to V_{DD}.
- The PDR monitors both the V_{DD} and V_{DDA} supply voltages, however the V_{DDA} power supply supervisor can be disabled (by programming a dedicated Option bit) to reduce the power consumption if the application design ensures that V_{DDA} is higher than or equal to V_{DD}.

3.5.3 Voltage regulator

The regulator has three operating modes: main (MR), low power (LPR) and power down.

- MR is used in normal operating mode (Run)
- LPR can be used in Stop mode where the power demand is reduced
- Power down is used in Standby mode: the regulator output is in high impedance: the kernel circuitry is powered down, inducing zero consumption (but the contents of the registers and SRAM are lost)

This regulator is always enabled after reset. It is disabled in Standby mode, providing high impedance output.

3.5.4 Low-power modes

The CKS32F031xx microcontroller supports three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:

Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

Stop mode

Stop mode achieves very low power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low power mode.

The device can be woken up from Stop mode by any of the EXTI lines. The EXTI line source can be one of the 16 external lines or the RTC alarm.

Standby mode

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and register contents are lost except for the Standby circuitry.

The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pins, or an RTC alarm occurs.

Note:

The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop or Standby mode.

3.6 Clocks and startup

System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example on failure of an indirectly used external crystal, resonator or oscillator).

Several prescalers allow the application to configure the frequency of the AHB and the APB domains. The maximum frequency of the AHB and the APB domains is 48 MHz.

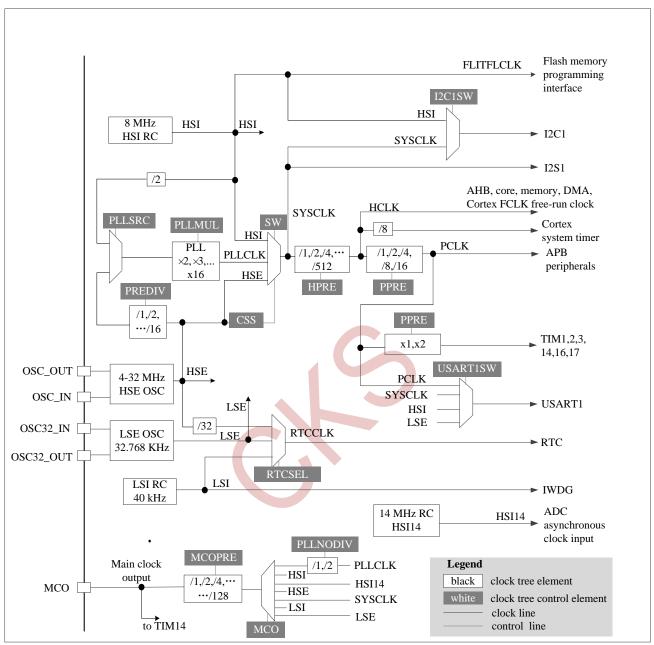


Figure 2 Clock tree

3.7 General-purpose inputs/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions.

The I/O configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

3.8 Direct memory access controller (DMA)

The 5-channel general-purpose DMAs manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers.

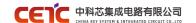
The DMA supports circular buffer management, removing the need for user code intervention when the controller reaches the end of the buffer.

Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent.

DMA can be used with the main peripherals: SPI, I2C, USART, all TIMx timers (except TIM14) and ADC.

3.9 Interrupts and events

3.9.1 Nested vectored interrupt controller (NVIC)


The CKS32F031xx family embeds a nested vectored interrupt controller able to handle up to 32 maskable interrupt channels (not including the 16 interrupt lines of Cortex[™]-M0) and 4 priority levels.

- Closely coupled NVIC gives low latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Closely coupled NVIC core interface
- Allows early processing of interrupts
- Processing of late arriving higher priority interrupts
- Support for tail-chaining
- · Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimal interrupt latency.

3.9.2 Extended interrupt/event controller (EXTI)

The extended interrupt/event controller consists of 24 edge detector lines used to generate interrupt/event requests and wake-up the system. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the internal clock period. Up to 39 GPIOs can be connected to the 16 external interrupt lines.

3.10 Analog to digital converter (ADC)

The 12-bit analog to digital converter has up to 16 external and 2 internal (temperature sensor/voltage reference measurement) channels and performs conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs.

The ADC can be served by the DMA controller.

An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

3.10.1 Temperature sensor

The temperature sensor (TS) generates a voltage V_{SENSE} that varies linearly with temperature.

The temperature sensor is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value.

The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.

Calibration value nameDescriptionMemory addressTS_CAL1TS_ADC raw data acquired at temperature of 30 °C, V_{DDA} = 3.3 V0x1FFF F7B8 - 0x1FFF F7B9TS_CAL2TS_ADC raw data acquired at temperature of 110 °C, V_{DDA} =3.3 V0x1FFF F7C2 - 0x1FFF F7C3

Table 2. Temperature sensor calibration values

3.10.2 Internal voltage reference (V_{REFINT})

The internal voltage reference (V_{REFINT}) provides a stable (bandgap) voltage output for the ADC. V_{REFINT} is internally connected to the ADC_IN17 input channel.

Table 3. Internal voltage reference calibration values

Calibration value name	Description	Memory address
VREFINT_CAL	Raw data acquired at temperature of 30 °C V _{DDA} = 3.3 V	0x1FFF F7BA - 0x1FFF F7BB

3.11 Timers and watchdogs

Devices of the CKS32F031xx family include up to 5 general-purpose timers and an advanced control timer.

Table 4 compares the features of the advanced-control, general-purpose and basic timers.

Capture/ Timer Counter Counter Prescaler **DMA** request Complementary **Timer** compare type resolution type factor generation outputs channels Up, Any integer Advanced 3 TIM1 16-bit down, between 1 Yes 4 control up/down and 65536 Up, Any integer TIM2 32-bit down, between 1 Yes 4 up/down and 65536 Up, Any integer TIM3 16-bit between 1 4 down, Yes and 65536 up/down General purpose Any integer TIM14 16-bit Up between 1 Nο 1 and 65536 Any integer TIM16, 16-bit Uр Yes between 1 1 1 TIM17 and 65536

Table 4. Timer feature comparison

3.11.1 Advanced-control timer (TIM1)

The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on 6 channels. It has complementary PWM outputs with programmable inserted dead times. It can also be seen as a complete general-purpose timer. The 4 independent channels can be used for:

- Input capture
- Output compare
- PWM generation (edge or center-aligned modes)
- One-pulse mode output

If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If configured as the 16-bit PWM generator, it has full modulation capability (0-100%).

The counter can be frozen in debug mode.

Many features are shared with those of the standard timers which have the same architecture. The advanced control timer can therefore work together with the other timers via the Timer Link feature for synchronization or event chaining.

3.11.2 General-purpose timers (TIM2, 3, 14, 16, 17)

There are five synchronizable general-purpose timers embedded in the CKS32F031xx devices (see *Table 4* for differences). Each general-purpose timer can be used to generate PWM outputs, or as simple time base.

TIM2 and TIM3

CKS32F031xx devices feature two synchronizable 4-channel general-purpose timers. TIM2 based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler.TIM3 based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler.TIM2 and TIM3 feature 4 independent channels for input capture/output compare, PWM or one-pulse mode output. This gives up to 12 input captures/output compares/PWMs on the largest packages.

TIM2 and TIM3 general-purpose timers can work with the TIM1 advanced-control timer via the Timer Link feature for synchronization or event chaining.

These provide independent DMA request generation.

These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.

Their counters can be frozen in debug mode.

TIM14

This timer is based on a 16-bit auto-reload upcounter and a 16-bit prescaler.

TIM14 features one single channel for input capture/output compare, PWM or one-pulse mode output.

TIM16 and TIM17

These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.

TIM16 and TIM17 feature one single channel for input capture/output compare, PWM or one-pulse mode output.

TIM16 and TIM17 timers can work together.

TIM16 and TIM17 have a complementary output with dead-time generation and independent DMA request generation.

Their counters can be frozen in debug mode.

3.11.3 Independent watchdog (IWDG)

The independent watchdog is based on an 8-bit prescaler and 12-bit downcounter with user-defined refresh window. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.

3.11.4 System window watchdog (WWDG)

The system window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the APB clock (PCLK). It has an early warning interrupt capability and the counter can be frozen in debug mode.

3.11.5 SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features:

- A 24-bit down counter
- Autoreload capability
- Maskable system interrupt generation when the counter reaches 0
- Programmable clock source (HCLK or HCLK/8)

3.12 Real-time clock (RTC)

The RTC is an independent BCD timer/counter. Its main features are the following:

- Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format
- Automatically correction for 28, 29 (leap year), 30, and 31 day of the month
- Programmable alarm with wake up from Stop and Standby modecapability
- On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock.
- Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal inaccuracy
- 2 anti-tamper detection pins with programmable filter. The MCU can be woken up from Stop and Standby modes on tamper event detection.
- Timestamp feature which can be used to save the calendar content. This function can triggered by an event on the timestamp pin, or by a tamper event. The MCU can be woken up from Stop and Standby modes on timestamp event detection.
- Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision.

The RTC clock sources can be:

- A 32.768 kHz external crystal
- A resonator or oscillator
- The internal low-power RC oscillator (typical frequency of 40 kHz)
- The high-speed external clock divided by 32

3.13 Inter-integrated circuit interfaces (I²C)

An I²C interface (I2C1) can operate in multimaster or slave modes. Both can support Standard mode (up to 100 kbit/s) or Fast mode (up to 400 kbit/s). I2C1 also supports Fast Mode Plus (up to 1 Mbit/s) with 20 mA output drive.

Both support 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (2 addresses, 1 with configurable mask). They also include programmable analog and digital noise filters.

Table 5. Comparison of I2C analog and digital filters

	Analog filter	Digital filter
Pulse width of suppressed spikes	≥ 50 ns	Programmable length from 1 to 15 I2C peripheral clocks
Benefits	Available in Stop mode	Extra filtering capability vs. standard requirements. Stable length
Drawbacks	Variations depending on temperature, voltage, process	

In addition, I2C1 provides hardware support for SMBUS 2.0 and PMBUS 1.1: ARP capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts verifications and ALERT protocol management.

The I2C1 interfaces can be served by the DMA controller.

Refer to Table 6 for the implementation of I2C1.

Table 6. CKS32F031xx I²C implementation⁽¹⁾

I2C features	I2C1
7-bit addressing mode	Х
10-bit addressing mode	Х
Standard mode (up to 100 kbit/s)	Х
Fast mode (up to 400 kbit/s)	Х
Fast Mode Plus with 20 mA output drive I/Os (up to 1 Mbit/s)	Х
SMBus	Х

^{1.}X stands for supported functionality.

3.14 Universal synchronous/asynchronous receiver transmitters (USART)

The device embeds up to an universal synchronous/asynchronous receiver transmitters (USART1), which communicate at speeds of up to 6 Mbit/s.

They provide hardware management of the CTS and RTS signals, multiprocessor communication mode, master synchronous communication and single-wire half-duplex communication mode. The USART1 supports also auto baud rate feature.

The USART interfaces can be served by the DMA controller.

Refer to Table 7 for the implementation of USART1.

Table 7. CKS32F031xx USART implementation(1)

USART modes/features	USART1
Hardware flow control for modem	Х
Continuous communication using DMA	Х
Multiprocessor communication	Х
Synchronous mode	X
Single-wire half-duplex communication	Х
Receiver timeout interrupt	X
Auto baud rate detection	Х

^{1.}X stands for supported functionality.

3.15 Serial peripheral interface (SPI)/ Inter-integrated sound interfacesI2S

Up to two SPIs are able to communicate up to 18 Mbits/s in slave and master modes in full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame size is configurable from 4 bits to 16 bits.

One standard I²S interface (multiplexed with SPI1) supporting four different audio standards can operate as master or slave at simplex communication mode. It can be configured to transfer 16 and 24 or 32 bits with16-bit or 32-bit data resolution and synchronized by a specific signal. Audio sampling frequency from 8 kHz up to 192 kHz can be set by 8-bit programmable linear prescaler. When operating in master mode it can output a clock for an external audio component at 256 times the sampling frequency.

Table 8. CKS32F031x SPI implementation⁽¹⁾

SPI features	SPI
Hardware CRC calculation	Х
Rx/Tx FIFO	Х
NSS pulse mode	Х
TI mode	Х

^{1.}X stands for supported functionality.

3.16 Serial wire debug port (SW-DP)

An ARM SW-DP interface is provided to allow a serial wire debugging tool to be connected to the MCU.

4 Pinouts and pin descriptions

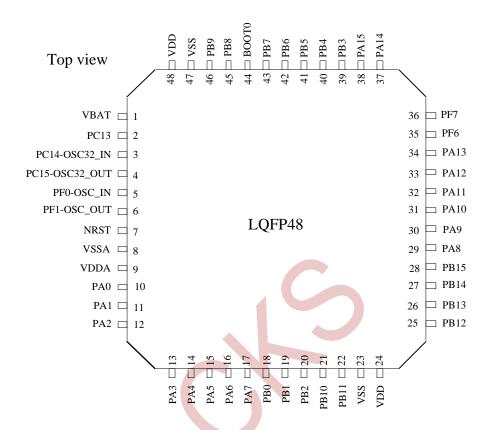


Figure 3. LQFP48 48-pin package pinout

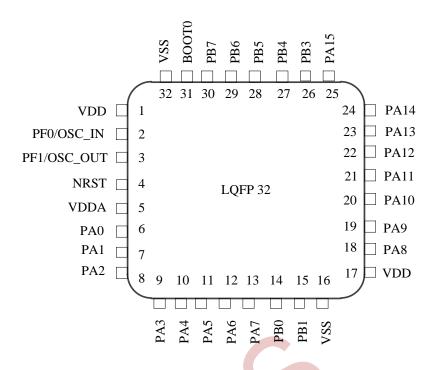


Figure 4. LQFP32 32-pin package pinout

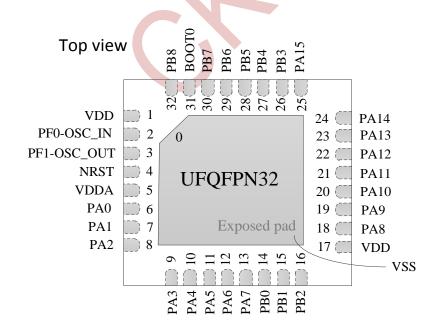


Figure 5. UFQFPN32 package pinout

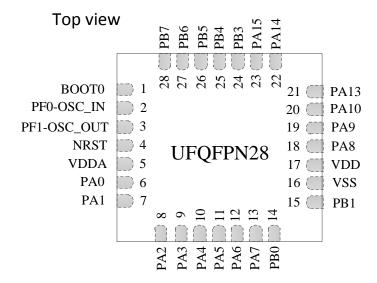


Figure 6. UFQFPN28 package pinout

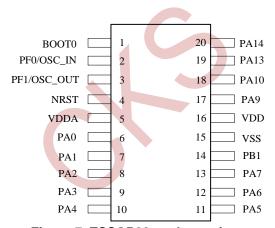


Figure 7. TSSOP20 package pinou

Table 9. Legend/abbreviations used in the pinout table

	Name	Abbreviation	Definition			
F	Pin name	Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name				
		S	Supply pin			
	Pin type	I	Input only pin			
		I/O	Input / output pin			
		FT	5 V tolerant I/O			
		FTf	5 V tolerant I/O, FM+ capable			
1/6	O structure	TTa	3.3 V tolerant I/O directly connected to ADC			
1/0	J structure	TC	Standard 3.3V I/O			
		В	Dedicated BOOT0 pin			
		RST	Bidirectional reset pin with embedded weak pull-up resistor			
	Notes	Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset.				
Pin	Alternate functions	Functions selected through GPIOx_AFR registers				
functions	Additional functions	Functions directly	y selected/enabled through peripheral registers			

Table 10. Pin definitions

Pin number								linition	Pin functions		
LQFP48	LQFP32	UFQFPN32	UFQFPN28	TSSOP20	Pin name (function after reset)	Pin	I/O structure	Notes	Alternate functions	Additional functions	
1	-	-	-	-	VBAT	S			Complementary	power supply	
2	-	-	-	-	PC13	I/O	TC	(1)	-	RTC_TAMP1, RTC_TS, RTC_OUT, WKUP2	
3	-	-	-	-	PC14-OSC32_IN (PC14)	I/O	TC	(1)	-	OSC32_IN	
4	-	-	1	1	PC15-OSC32_OUT (PC15)	I/O	TC	(1)	-	OSC32_OUT	
5	2	2	2	2	PF0-OSC_IN (PF0)	I/O	FT		•	OSC_IN	
6	3	3	3	3	PF1-OSC_OUT (PF1)	I/O	FT		-	OSC_OUT	
7	4	4	4	4	NRST	I/O	RST		Device reset input / internal reset output (active low)		
8	16	0	16	15	VSSA	S			Analog (ground	
9	5	5	5	5	VDDA	S			Analog pov	ver supply	
10	6	6	6	6	PA0	I/O	TTa		USART1_CTS TIM2_CH1_ETR	ADC_IN0, RTC_TAMP2, WKUP1	
11	7	7	7	7	PA1	I/O	TTa		USART1_RTS, TIM2_CH2, EVENTOUT	ADC_IN1	
12	8	8	8	8	PA2	I/O	TTa		USART1_TX TIM2_CH3	ADC_IN2	
13	9	9	9	9	PA3	I/O	TTa		USART1_RX TIM2_CH4	ADC_IN3	
14	10	10	10	10	PA4	I/O	TTa		SPI1_NSS, I2S1_WS USART1_CK, TIM14_CH1	ADC_IN4	
15	11	11	11	11	PA5	I/O	TTa		SPI1_SCK I2S1_CK TIM2_CH1_ETR	ADC_IN5	

Table 10. Pin definitions (continued)

Pin number									Pin func	tions
LQFP48	LQFP32	UFQFPN32	UFQFPN28	TSSOP20	Pin name (function after reset)	Pin	I/O structure	Notes	Alternate functions	Additional functions
16	12	12	12	12	PA6	I/O	TTa		SPI1_MISO, I2S1_MCK, TIM3_CH1, TIM1_BKIN, TIM16_CH1, EVENTOUT	ADC_IN6
17	13	13	13	13	PA7	I/O	TTa		SPI1_MOSI, I2S1_SD, TIM3_CH2, TIM14_CH1, TIM1_CH1N, TIM17_CH1, EVENTOUT	ADC_IN7
18	14	14	14	1	PB0	I/O	ТТа		TIM3_CH3, TIM1_CH2N, EVENTOUT	ADC_IN8
19	15	15	15	14	PB1	I/O	тта		TIM3_CH4, TIM14_CH1, TIM1_CH3N	ADC_IN9
20		16	-	-	PB2	I/O	FT	(3)	-	-
21	1	-	-	-	PB10	1/0	FT		I2C1_SCL TIM2_CH3	-
22	1	-	-	-	PB11	I/O	FT		TIM2_CH4 EVENTOUT I2C1_SDA	-
23	16	0	16	15	VSS	S			Grou	und
24	17	17	17	16	VDD	S			Digital pow	er supply
25	-	-	-	-	PB12	I/O	FT		SPI1_NSS, TIM1_BKIN EVENTOUT	-
26	-	-	-	-	PB13	I/O	FT		SPI1_SCK TIM1_CH1N	-
27	-	-	-	-	PB14	I/O	FT		SPI1_MISO, TIM1_CH2N	-

Table 10. Pin definitions (continued)

Pin number									Pin functions		
LQFP48	LQFP32	UFQFPN32	UFQFPN28	TSSOP20	Pin name (function after reset)	Pin	I/O structure	Notes	Alternate functions	Additional functions	
28	-	-	-	-	PB15	I/O	FT		SPI1_MOSI, TIM1_CH3N	RTC_REFIN	
29	18	18	18	-	PA8	I/O	FT		USART1_CK, TIM1_CH1, EVENTOUT, MCO	-	
30	19	19	19	17	PA9	I/O	FT		USART1_TX, TIM1_CH2, I2C1_SCL		
31	20	20	20	18	PA10	I/O	FTf		USART1_RX, TIM1_CH3, TIM17_BKIN, 12C1_SDA	-	
32	21	21		,	PA11	1/0	FT		USART1_CTS, TIM1_CH4, EVENTOUT	-	
33	22	22	-	-	PA12	1/0	FT		USART1_RTS, TIM1_ETR, EVENTOUT	-	
34	23	23	21	19	PA13 (SWDIO)	I/O	FT	(4)	IR_OUT, SWDIO	-	
35	1	-	-	-	PF6	I/O	FTf		I2C1_SCL	-	
36	-	-	-	-	PF7	I/O	FTf		I2C1_SDA	-	
37	24	24	22	20	PA14 (SWCLK)	I/O	FT	(4)	USART1_TX ⁽²⁾ , SWCLK	-	
38	25	25	23	-	PA15	I/O	FT		SPI1_NSS, I2S1_WS, USART1_ RX, TIM2_CH_ETR EVENTOUT	-	
39	26	26	26	-	PB3	I/O	FT		SPI1_SCK, I2S1_CK, EVENTOUT, TIM2_CH2	-	

Table 10. Pin definitions (continued)

	Pin	num	ber						Pin func	tions	
LQFP48	LQFP32	UFQFPN32	UFQFPN28	TSSOP20	Pin name (function after reset)	Pin	I/O structure	Notes	Alternate functions	Additional functions	
40	27	27	25	1	PB4	I/O	FT		SPI1_MISO, I2S1_MCK, TIM3_CH1, EVENTOUT	-	
41	28	28	26	1	PB5	I/O	FT		SPI1_MOSI, I2S1_SD, I2C1_SMBA, TIM16_BKIN, TIM3_CH2	-	
42	29	29	27	-	PB6	I/O	FTf		I2C1_SCL, USART1_TX, TIM16_ CH1N	-	
43	30	30	28	,	PB7	I/O	FTf		I2C1_SDA, USART1_RX, TIM17_CH1N	-	
44	31	31	1	1	BOOT0	I	В		Boot memor	y selection	
45	1	32	-	-	PB8	I/O	FTf	(4)	I2C1_SCL, TIM16_CH1	-	
46	1	-	•	1	PB9	I/O	FTf		I2C1_SDA, IR_OUT, TIM17_CH1, EVENTOUT	-	
47	32	0	-	-	VSS	S			Grou	ınd	
48	1	1	-	-	VDD	S			Digital power supply		

- 1. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited:
 - The speed should not exceed 2 MHz with a maximum load of 30 pF.
 - These GPIOs must not be used as current sources (e.g. to drive an LED).
- 2. This feature is available on CKS32F031x6 and CKS32F031x4 devices only.
- 3. On LQFP32 package, PB2 and PB8 should be treated as unconnected pins (even when they are not available on the package, they are not forced to a defined level by hardware).
- 4. After reset, these pins are configured as SWDIO and SWCLK alternate functions, and the internal pull-up on SWDIO pin and internal pull-down on SWCLK pin are activated.

Table 11. Alternate functions selected through GPIOA_AFR registers for port A

Pin name	AF0	AF1	AF2	AF3	AF4	AF5	AF6
PA0	-	USART1_CTS	TIM2_CH1_ETR	-	-	-	-
PA1	EVENTOUT	USART1_RTS	TIM2_CH2	-	-	-	-
PA2	-	USART1_TX	TIM2_CH3	-	-	-	-
PA3	-	USART1_RX	TIM2_CH4	-	-	-	-
PA4	SPI1_NSS I2S1_WS	USART1_CK	-	-	TIM14_CH1	-	-
PA5	SPI1_SCK I2S1_CK	-	TIM2_CH1_ETR	-	1	1	-
PA6	SPI1_MISO I2S1_MCK	TIM3_CH1	TIM1_BKIN	-	-	TIM16_CH1	EVENTOUT
PA7	SPI1_MOSI I2S1_SD	TIM3_CH2	TIM1_CHIN	-	TIM14_CH1	TIM17_CH1	EVENTOUT
PA8	MCO	USART1_CK	TIM1_CH1	EVENTOUT	-	-	-
PA9	-	USART1_TX	TIM1_CH2	-	I2C1_SCL	-	-
PA10	TIM17_BKIN	USART1_RX	TIM1_CH3	-	I2C1_SDA	-	-
PA11	EVENTOUT	USART1_CTS	TIM1_CH4	-	-	-	-
PA12	EVENTOUT	USART1_RTS	TIM1_ETR		-	-	-
PA13	SWDIO	IR_OUT	-	-	-		
PA14	SWCLK	USART1_TX	-		-	-	-
PA15	SPI1_NSS I2S1_WS	USART1_RX	TIM2_CH1_ETR	EVENTOUT	-	-	-

Table 12. Alternate functions selected through GPIOB_AFR registers for port B

			ragii oi iob_/ii it iog	
Pin name	AF0	AF1	AF2	AF3
PB0	EVENTOUT	TIM3_CH3	TIM1_CH2N	-
PB1	TIM14_CH1	TIM3_CH4	TIM1_CH3N	-
PB2	-	-	-	-
PB3	SPI1_SCK,I2S1_CK	EVENTOUT	TIM2_CH2	-
PB4	SPI1_MISO,I2S1_MCK	TIM3_CH1	EVENTOUT	-
PB5	SPI1_MOSI,I2S1_SD	TIM3_CH2	TIM16_BKIN	I2C1_SMBA
PB6	USART1_TX	I2C1_SCL	TIM16_CH1N	-
PB7	USART1_RX	I2C1_SDA	TIM17_CH1N	-
PB8	-	I2C1_SCL	TIM16_CH1	-
PB9	IR_OUT	I2C1_SDA	TIM17_CH1	EVENTOUT
PB10	-	I2C1_SCL	TIM2_CH3	-
PB11	EVENTOUT	I2C1_SDA	TIM2_CH4	-
PB12	SPI1_NSS	EVENTOUT	TIM1_BKIN	-
PB13	SPI1_SCK	-	TIM1_CH1N	-
PB14	SPI1_MISO	-	TIM1_CH2N	-
PB15	SPI1_MOSI		TIM1_CH3N	

5 Memory mapping

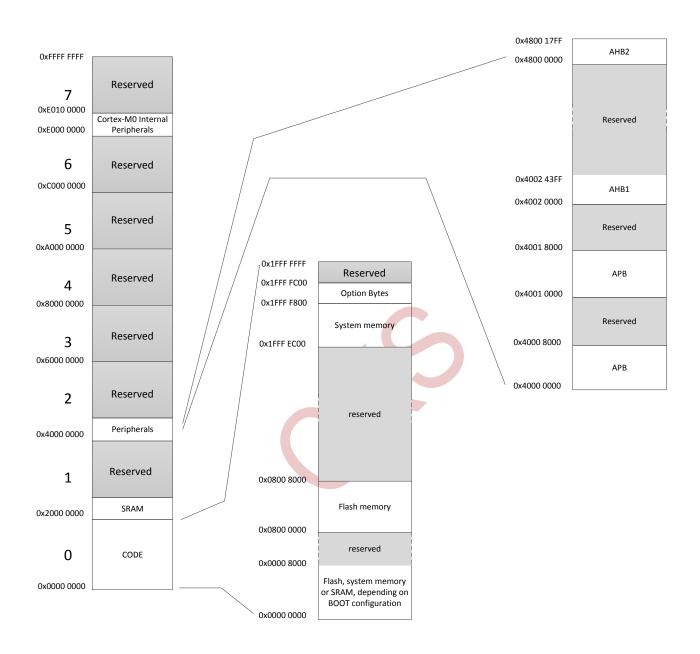


Figure 8. CKS32F031xx memory map

Table 13. CKS32F031xx peripheral register boundary addresses

Bus	Boundary address	Size	Peripheral
	0x4800 1800 - 0x5FFF FFFF	~384 MB	Reserved
	0x4800 1400 - 0x4800 17FF	1 KB	GPIOF
	0x4800 0C00 - 0x4800 13FF	2 KB	Reserved
ALIDO	0x4800 0800 - 0x4800 0BFF	1 KB	GPIOC
AHB2	0x4800 0400 - 0x4800 07FF	1 KB	GPIOB
	0x4800 0000 - 0x4800 03FF	1 KB	GPIOA
	0x4002 4400 - 0x47FF FFFF	~128 MB	Reserved
	0x4002 3400 - 0x4002 3FFF	3 KB	Reserved
	0x4002 3000 - 0x4002 33FF	1 KB	CRC
	0x4002 2400 - 0x4002 2FFF	3 KB	Reserved
AHB1	0x4002 2000 - 0x4002 23FF	1 KB	FLASH Interface
ALIDI	0x4002 1400 - 0x4002 1FFF	3 KB	Reserved
	0x4002 1000 - 0x4002 13FF	1 KB	RCC
	0x4002 0400 - 0x4002 0FFF	3 KB	Reserved
	0x4002 0000 - 0x4002 03FF	1 KB	DMA
	0x4001 8000 - 0x4001 FFFF	32 KB	Reserved
	0x4001 5C00 - 0x4001 7FFF	9 KB	Reserved
	0x4001 5800 - 0x4001 5BFF	1 KB	DBGMCU
	0x4001 4C00 - 0x4001 57FF	3 KB	Reserved
	0x4001 4800 - 0x4001 4BFF	1 KB	TIM17
	0x4001 4400 - 0x4001 47FF	1 KB	TIM16
	0x4001 3C00 - 0x4001 43FF	1 KB	Reserved
	0x4001 3800 - 0x4001 3BFF	1 KB	USART1
APB	0x4001 3400 - 0x4001 37FF	1 KB	Reserved
AFB	0x4001 3000 - 0x4001 33FF	1 KB	SPI1/I2S1
	0x4001 2C00 - 0x4001 2FFF	1 KB	TIM1
	0x4001 2800 - 0x4001 2BFF	1 KB	Reserved
	0x4001 2400 - 0x4001 27FF	1 KB	ADC
	0x4001 0800 - 0x4001 23FF	7 KB	Reserved
	0x4001 0400 - 0x4001 07FF	1 KB	EXTI
	0x4001 0000 - 0x4001 03FF	1 KB	SYSCFG
	0x4000 8000 - 0x4000 FFFF	32 KB	Reserved

Table 13. CKS32F031x peripheral register boundary addresses (continued)

Bus	Boundary address	Size	Peripheral
	0x4000 7400 - 0x4000 7FFF	3 KB	Reserved
	0x4000 7000 - 0x4000 73FF	1 KB	PWR
	0x4000 5800 - 0x4000 6FFF	6 KB	Reserved
	0x4000 5400 - 0x4000 57FF	1 KB	I2C1
	0x4000 3400 - 0x4000 53FF	8 KB	Reserved
	0x4000 3000 - 0x4000 33FF	1 KB	IWDG
	0x4000 2C00 - 0x4000 2FFF	1 KB	WWDG
	0x4000 2800 - 0x4000 2BFF	1 KB	RTC
	0x4000 2400 - 0x4000 27FF	1 KB	Reserved
APB	0x4000 2000 - 0x4000 23FF	1 KB	TIM14
APB	0x4000 0800 - 0x4000 1FFF	6 KB	Reserved
	0x4000 0400 - 0x4000 07FF	1 KB	TIM3
	0x4000 0000 - 0x4000 03FF	1 KB	TIM2

6 Electrical characteristics

6.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

6.1.1 Minimum and maximum values

Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_A$ max (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\sigma$).

6.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = V_{DDA} = 3.3$ V. They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean±2σ).

6.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

6.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in Figure 9.

6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 10.

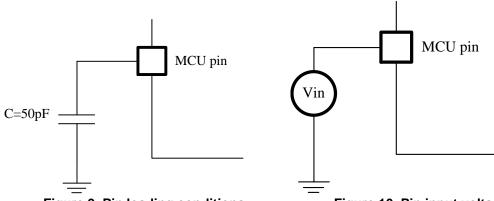


Figure 9. Pin loading conditions

Figure 10. Pin input voltage

6.1.6 Power supply scheme

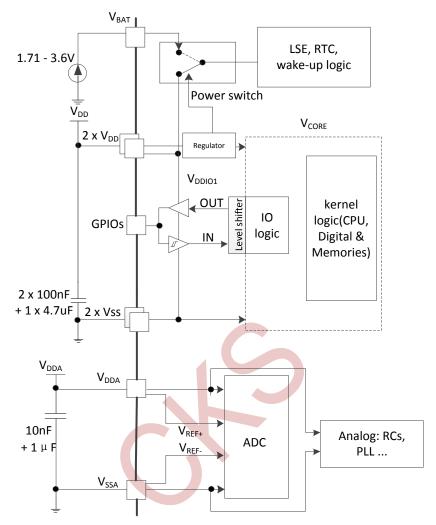


Figure 11. Power supply scheme

Caution: Each power supply pair (V_{DD}/V_{SS}, V_{DDA}/V_{SSA} etc.) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality of

the device.

6.1.7 Current consumption measurement

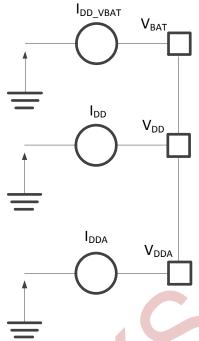


Figure 12. Current consumption measurement scheme

6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 14: Voltage characteristics*, *Table 15: Current characteristics*, and *Table 16: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 14. Voltage characteristics⁽¹⁾

Symbol	Ratings	Min	Max	Unit	
V _{DD} -V _{SS}	External main supply voltage (including V_{DDA} and V_{DD})	-0.3	4.0		
V_{DD} – V_{DDA}	Allowed voltage difference for $V_{DD} > V_{DDA}$	-	0.4		
	Input voltage on FT and FTf pins	V _{SS} – 0.3	V _{DD} + 4.0 ⁽³⁾	V	
(2)	Input voltage on TTa pins	V _{SS} – 0.3	4.0		
V _{IN} (2)	BOOT0	0	V _{DD} + 4.0 ⁽³⁾		
	Input voltage on any other pin	V _{SS} – 0.3	4.0		
$ \Delta V_{DDx} $	Variations between different V _{DD} power pins	-	50		
V _{SSX} - V _{SS}	Variations between all the different ground pins	-	50	mV	
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	see Section 6.3. characteristics	12: Electrical sensi	tivity	

1. All main power (V_{DD} , V_{DDA}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the

external power supply, in the permitted range.

 V_{IN} maximum must always be respected. Refer to Table 15: Current characteristics for the maximum allowed injected current values.

Table 15. Current characteristics

Symbol	Ratings	Max.	Unit
ΣI_{VDD}	Total current into sum of all VDD power lines (source) ⁽¹⁾	120	
Σl _{VSS}	Total current out of sum of all VSS ground lines (sink) ⁽¹⁾	-120	
I _{VDD(PIN)}	Maximum current into each VDD power pin (source) ⁽¹⁾	100	
I _{VSS(PIN)}	Maximum current out of each VSS ground pin (sink) ⁽¹⁾	-100	
	Output current sunk by any I/O and control pin	25	
I _{IO(PIN)}	Output current source by any I/O and control pin	-25	
Σ1	Total output current sunk by sum of all IOs and control pins ⁽²⁾	80	mA
$\Sigma I_{IO(PIN)}$	Total output current sourced by sum of all IOs and control pins ⁽²⁾	-80	
	Injected current on FT and FTf pins	-5/+0 ⁽⁴⁾	
I _{INJ(PIN)} (3)	Injected current on TC and RST pin	± 5	
	Injected current on TTa pins ⁽⁵⁾	± 5	
ΣI _{INJ(PIN)}	Total injected current (sum of all I/O and control pins) ⁽⁶⁾	± 25	

- 1. All main power (V_{DD}, V_{DDA}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply, in the permitted range.
- This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages.
- 3. A positive injection is induced by V_{IN}>V_{DD} while a negative injection is induced by V_{IN}<V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 14: Voltage characteristics* for the maximum allowed input voltage values.
- 4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value.
- 5. A positive injection is induced by V_{IN}>V_{DDA} while a negative injection is induced by V_{IN}<V_{SS}. I_{INJ}(PIN) must never be exceeded. Refer also to *Table 15: Voltage characteristics* for the maximum allowed input voltage values. Negative injection disturbs the analog performance of the device. See note ⁽²⁾ below *Table 49: ADC accuracy*.
- 6. When several inputs are submitted to a current injection, the maximum $\Sigma I_{INJ(PIN)}$ is the absolute sum of the positive and negative injected currents (instantaneous values).

Table 16. Thermal characteristics

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	-65 to +150	°C
T _J	Maximum junction temperature	150	°C

6.3 Operating conditions

6.3.1 General operating conditions

Table 17. General operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
f _{HCLK}	Internal AHB clock frequency	-	0	48	N41.1-
f _{PCLK}	Internal APB clock frequency	-	0	48	MHz
V_{DD}	Standard operating voltage	-	2.4	3.6	
V_{DDA}	Analog operating voltage	Must have a potential equal to or higher than V _{DD}	2.4	3.6	
V _{IN} ⁽¹⁾		TC and RST pins	-0.3	V _{DDIOX} +0.3	V
VIN	Input voltage	TTa pins	-0.3	V _{DDA} + ₀ . 3 ⁽²⁾	V
		FT and FTf pins	-0.3	5.5 ⁽²⁾	
		BOOT0	0	5.5	
		LQFP48	-	364	
Pp	Power dissipation at T _A = 85 °C	UFQFPN32	-	526	
PD	for suffix 6 ⁽¹⁾	LQFP32	-	357	
		UFQFPN28	-	169	mW
		TSSOP20	-	182	
		TSSOP20	-	263	
TA	Ambient temperature for 6 suffix	Maximum power dissipation	-40	85	
IA	version	Low power dissipation ⁽²⁾	-40	105	°C
TJ	Junction temperature range	6 suffix version	-40	105	

^{1.} If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_{Jmax} .

^{2.} In low power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_{Jmax} .

6.3.2 Operating conditions at power-up / power-down

The parameters given in *Table 18* are derived from tests performed under the ambient temperature condition summarized in *Table 17*.

Table 18. Operating conditions at power-up / power-down

Symbol	Parameter	Conditions	Min	Max	Unit
	V _{DD} rise time rate		0	∞	
t _{VDD}	V _{DD} fall time rate		20	∞	μs/V
t	V _{DDA} rise time rate		0	∞	μ5/ ν
t _{VDDA}	V _{DDA} fall time rate		20	∞	

6.3.3 Embedded reset and power control block characteristics

The parameters given in *Table 19* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 17: General operating conditions*.

Table 19. Embedded reset and power control block characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
(1)	Power on/power	Falling edge	1.80 ⁽²⁾	1.88	2.06	V
V _{POR/PDR} ⁽¹⁾	down reset threshold	Rising edge	1.84 ⁽³⁾	1.92	2.10	V
V _{PVDhyst} ⁽¹⁾	PDR hysteresis		-	40	-	mV
T _{RSTTEMPO} (3)	Reset temporization		1.50	2.50	4.50	ms

^{1.} The PDR detector monitors V_{DD} and also V_{DDA} (if kept enabled in the option bytes). The POR detector monitors only V_{DD} .

^{2.} The product behavior is guaranteed by design down to the minimum V_{POR/PDR} value.

^{3.} The data is based on feature results, not tested in production.

^{4.} Guaranteed by design, not tested in production.

Table 20 Programmable voltage detector characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		Rising edge	2.1	2.18	2.26	V
V_{PVD0}	PVD threshold 0	Falling edge	2	2.08	2.16	V
V	D)/D (I	Rising edge	2.19	2.28	2.37	V
V_{PVD1}	PVD threshold 1	Falling edge	2.09	2.18	2.37	V
V	D)/D (I 1 1 0	Rising edge	2.28	2.38	2.48	V
V_{PVD2}	PVD threshold 2	Falling edge	2.18	2.28	2.38	V
V	D) /D // 1 1 1 0	Rising edge	2.38	2.48	2.58	V
V_{PVD3}	PVD threshold 3	Falling edge	2.28	2.38	2.48	V
V	D)/D (I	Rising edge	2.47	2.58	2.69	V
V_{PVD4}	PVD threshold 4	Falling edge	2.37	2.48	2.59	V
V	D) /D 4h no oh ohd 5	Rising edge	2.57	2.68	2.79	V
V_{PVD5}	PVD threshold 5	Falling edge	2.47	2.58	2.69	V
V	D)/D (I 1 1 0	Rising edge	2.66	2.78	2.9	V
V_{PVD6}	PVD threshold 6	Falling edge	2.56	2.68	2.8	V
V	D)/D (1 1 1 7	Rising edge	2.76	2.88	3	V
V_{PVD7}	PVD threshold 7	Falling edge	2.66	2.78	2.9	V
V _{PVDhyst} ⁽¹⁾	PVD hysteresis		-	100	-	mV
$I_{DD(PVD)} \\$	PVD current consumption		1-6	0.15	$0.26^{(1)}$	μΑ

^{1.} Guaranteed by design, not tested in production.

6.3.4 Embedded reference voltage

The parameters given in *Table 21* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 17: General operating conditions*.

Table 21. Embedded internal reference voltage

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{REFINT}	Internal reference voltage	-40 °C < T _A < +85 °C	1.16	1.2	1.24 ⁽¹⁾	V
T _{S_vrefint} (2)	ADC sampling time when reading the internal reference voltage		ı	5.1	17.1 ⁽²⁾	μs
ΔV_{REFINT}	Internal reference voltage spread over the temperature range	V _{DDA} = 3 V ±10 mV	1	1	10 ⁽²⁾	mV
T _{Coeff}	Temperature coefficient		-100 ⁽²⁾	-	100 ⁽²⁾	ppm/°C

- 1. Data based on characterization results, not tested in production.
- 2. Guaranteed by design, not tested in production.

6.3.5 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in *Figure 12: Current consumption measurement scheme*.

All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to CoreMark code.

Typical and maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load)
- All peripherals are disabled except when explicitly mentioned
- The Flash memory access time is adjusted to the f_{HCLK} frequency
 - 0 wait state from 0 to 24 MHz
 - 1 wait state above 24 MHz
- When the peripherals are enabled f_{PCLK} = f_{HCLK}

The parameters given in *Table 22* to *Table 26* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 17: General operating conditions*.

Table 22. Typical and maximum current consumption from V_{DD} supply at V_{DD} = 3.6

		z zz. Typica			periph		_		periphe									
Symbol	Parameter	Conditions	f _{HCLK}	-	IV	lax @ T	A ⁽¹⁾	_	М	lax @ T	A ⁽¹⁾	Unit						
				Тур	25 °C	85 °C	105 °C	Тур	25 °C	85 °C	105 °C							
		HSE	48 MHz	18.4	20.0	20.1	20.4	11.4	12.5	12.5	12.6							
		bypass,	32 MHz	12.4	13.2	13.2	13.8	7.9	8.3	8.5	8.6							
		PLL on	24 MHz	9.9	10.7	10.7	11.0	6.2	6.8	7.0	7.0							
	Supply current in	HSE	8 MHz	3.3	3.6	3.8	3.9	2.2	2.6	2.6	2.6							
	Run mode,	bypass, PLL off	1 MHz	0.8	1.1	1.1	1.1	0.7	0.9	0.9	0.9							
	executing	LICI alaak	48 MHz	18.9	20.9	21.1	21.5	11.7	12.3	12.9	13.1							
	from Flash	HSI clock, PLL on	32 MHz	12.8	13.7	14.2	14.8	8.0	8.7	9.1	9.1							
			24 MHz	9.7	10.4	11.2	11.3	6.1	6.5	6.7	6.9							
	HSI clock, PLL off	8 MHz	3.5	4.0	4.0	4.1	2.4	2.6	2.7	2.7								
	HSE	48 MHz	17.3	19.7(2)	19.8	20.0(2)	10.3	11.2(2)	11.3	11.7(2)								
		bypass,	32 MHz	11.2	12.5	12.7	12.7	6.7	7.3	7.6	7.6							
		PLL on	24 MHz	8.9	10.0	10.1	10.1	5.1	5.5	5.8	5.9							
	Supply current in	HSE	8 MHz	2.8	3.1	3.3	3.3	1.7	2.0	2.1	2.1							
I _{DD}	Run mode,	bypass, PLL off	1 MHz	0.3	0.6	0.6	0.6	0.2	0.5	8.0	0.9	mA						
	code executing		48 MHz	17.4	19.7	19.7	20.0	10.4	11.2	11.3	11.8							
	from RAM	HSI clock, PLL on	32 MHz	11.8	12.8	12.8	13.1	6.8	7.4	7.7	7.9							
			24 MHz	9.0	10.0	10.0	10.1	5.2	5.7	6.0	6.0							
								HSI clock, PLL off	8 MHz	3.0	3.2	3.2	3.5	1.8	2.0	2.2	2.2	
		HSE	48 MHz	10.7	11.7(2)	11.9	12.5(2)	2.4	2.6(2)	2.7	2.9(2)							
		bypass,	32 MHz	7.1	7.8	8.1	8.2	1.6	1.7	1.9	1.9							
	Supply	PLL on	24 MHz	5.5	6.3	6.4	6.4	1.3	1.4	1.5	1.5							
	current in	HSE	8 MHz	1.8	2.0	2.0	2.1	0.4	0.4	0.5	0.5							
	Sleep mode, code – executing	bypass, PLL off	1 MHz	0.2	0.5	0.5	0.5	0.1	0.1	0.1	0.1							
			48 MHz	10.8	11.9	12.1	12.6	2.4	2.7	2.7	2.9							
		HSI clock, PLL on	32 MHz	7.3	8.0	8.4	8.5	1.7	1.9	1.9	2.0							
	OI IVAIVI		24 MHz	5.5	6.2	6.5	6.5	1.3	1.5	1.5	1.6							
	1	HSI clock, PLL off	8 MHz	1.9	2.2	2.3	2.4	0.5	0.5	0.5	0.6							

Table 23. Typical and maximum current consumption from the V_{DDA} supply

				V _{DDA} = 2.4 V					V _{DDA}	= 3.6 V	105 °C 198 ⁽³⁾ 138 108 4.4 4.4	
Symbol Paramete	Parameter	Conditions (1)	f _{HCLK}	Tun	М	ax @ T	(2)	Tun	М	85 °C 105 °C 195 °C 195 198(3) 135 138 106 108 4.1 4.4 4.1 4.4 275 278 215 218	Unit	
				Тур	25 °C	25 °C 85 °C 105 °C	Тур	25 °C	85 °C	105 °C		
		HSE	48 MHz	150	170 ⁽³⁾	178	182 ⁽³⁾	164	183 ⁽³⁾	195	198 ⁽³⁾	
	bypass,	32 MHz	104	121	126	128	113	129	135	138		
	PLL on	24 MHz	82	96	100	103	88	102	106	108		
	Supply current in	HSE	8 MHz	2.0	2.7	3.1	3.3	3.5	3.8	4.1	4.4	
I _{DDA}	Run mode or Sleep	bypass, PLL off	1 MHz	2.0	2.7	3.1	3.3	3.5	3.8	4.1	4.4	μA
BBA	mode,		48 MHz	220	240	248	252	244	263	275	278	Ι μ, τ
	code executing from Flash or RAM	HSI clock, PLL on	32 MHz	174	191	196	198	193	209	215	218	
			24 MHz	152	167	173	174	168	183	190	192	
or RAM	HSI clock, PLL off	8 MHz	72	79	82	83	83.5	91	94	95		

^{1.} Current consumption from the V_{DDA} supply is independent of whether the peripherals are on or off. Furthermore when the PLL is off, I_{DDA} is independent from the frequency.

^{2.} Data based on characterization results, not tested in production.

Table 24.Typical and maximum $I_{\mbox{\scriptsize DDA}}$ consumption in Stop and Standby modes

					Тур 🤅	V _{DD} (V _{DD} =	V _{DDA})			Max ⁽¹⁾		
Symbol	Parameter		Conditions	2.0 V	2.4 V 2.7 V 3.0 V 3.3 V 3.6 V		T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit			
	Supply current in Stop mode NO buoicom	NO	Regulator in run mode, all oscillators OFF	1.9	2	2.2	2.3	2.5	2.6	3.5	3.5	4.5	
		βι	Regulator in low-power mode, all oscillators OFF	1.9	2	2.2	2.3	2.5	2.6	3.5	3.5	4.5	
		A mc	LSI ON and IWDG ON	2.3	2.5	2.7	2.9	3.1	3.3	ı	1	-	
	current in Standby mode	V _{DDA}	LSI OFF and IWDG OFF	1.8	1.9	2	2.2	2.3	2.5	3.5	3.5	4.5	μA
I _{DDA}	Supply	ш	Regulator in run mode, all oscillators OFF	1.1	1.2	1.2	1.2	1.3	1.4	-	-	-	μΑ
	current in Stop mode Supply	current in	Regulator in low-power mode, all oscillators OFF	1.1	1.2	1.2	1.2	1.3	1.4	-	-	,	
	''' /		LSI ON and IWDG ON	1.5	1.6	1.7	1.8	1.9	2.0	ı	-	-	
	current in Standby mode		LSI OFF and IWDG OFF	1	1.0	1.1	1.1	1.2	1.2	-	-	-	

^{1.} Data based on characterization results, not tested in production.

Table 25. Typical and maximum current consumption from V_{BAT} supply

				Typ @ V _{BAT} Max ⁽¹⁾			T _A = 105 °C					
Symbol Parai	Parameter	Conditions	= 1.65 V	= 1.8 V	= 2.4 V	= 2.7 V	= 3.3 V	= 3.6 V	T _A = 25 °C	T _A = 85 °C	I _A =	Unit
1	Backup domain	LSE & RTC ON; "Xtal mode": lower driving capability; LSEDRV[1:0] = '00'	0.5	0.5	0.6	0.7	0.8	0.9	1.0	1.3	1.7	
DD-VBAT	supply current	LSE & RTC ON; "Xtal mode" higher driving capability; LSEDRV[1:0] = '11'	0.8	0.8	0.9	1.0	1.1	1.2	1.3	1.6	2.1	μА

^{1.} Data based on characterization results, not tested in production.

Typical current consumption

The MCU is placed under the following conditions:

- V_{DD}=V_{DDA}=3.3 V
- All I/O pins are in analog input configuration
- The Flash access time is adjusted to f_{HCLK} frequency
 - 0 wait states from 0 to 24 MHz,
 - 1 wait state above
- Prefetch is ON when the peripherals are enabled, otherwise it is OFF
- When the peripherals are enabled, f_{PCLK} = f_{HCLK}
- PLL is used for frequencies greater than 8 MHz
- AHB prescaler of 2, 4, 8 and 16 is used for the frequencies 4 MHz, 2 MHz, 1 MHz and 500 kHz respectively

Table26.Typical current consumption in Run mode, code with data processing running from Flash

			Typ(rur	n mode)	Typ(slee	ep mode)	
Symbol	Parameter	f _{HCLK}	Peripherals enabled	Peripherals disabled	Peripherals enabled	Peripherals disabled	Unit
		48 MHz	20.2	12.3	11.1	2.9	
		36 MHz	15.3	9.5	8.4	2.4	
		32 MHz	13.6	8.6	7.5	2.2	
		24 MHz	10.5	6.7	5.9	1.8	
	Supply current in Run mode from	16 MHz	7.2	4.7	4.1	1.4	- A
I _{DD}	V _{DD} supply	8 MHz	3.8	2.7	2.3	0.9	-mA
		4 MHz	2.4	1.8	1.7	0.9	
		2 MHz	1.6	1.3	1.2	0.8	
		1 MHz	1.2	1.1	1.0	0.8	
		500 kHz	1.0	1.0	0.9	0.8	
		48 MHz		15	55		
		36 MHz		11	17		
		32 MHz		10	05		
		24 MHz		8	3		
I _{DDA}	Supply current in Run mode from	16 MHz		6	0		μA
'DDA	V _{DDA} supply	8 MHz		2.	.2		μΛ
		4 MHz		2.	.2		
		2 MHz		2	.2		
		1 MHz		2	.2		
				2	.2		

I/O system current consumption

The current consumption of the I/O system has two components: static and dynamic.

I/O static current consumption

All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in *Table 45: I/O static characteristics*.

For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.

Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs.

Caution:

Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode.

I/O dynamic current consumption

In addition to the internal peripheral current consumption measured previously (see *Table 26: Typical current consumption in Run mode, code with data processing running from Flash*), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin:

$$I_{SW} = V_{DDIOx} \times f_{SW} \times C$$

where

 I_{SW} is the current sunk by a switching I/O to charge/discharge the capacitive load V_{DD} is the MCU supply voltage

f_{SW} is the I/O switching frequency

C is the total capacitance seen by the I/O pin: $C = C_{INT} + C_{EXT} + C_{S}$

C_S is the PCB board capacitance including the pad pin.

The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.

Table 27. Switching output I/O current consumption

Symbol	Parameter	Conditions ⁽¹⁾	I/O toggling frequency (f _{SW})	Тур	Unit
			4 MHz 8 MHz	0.07 0.15	
		$V_{DD} = 3.3 \text{ V}$	16 MHz	0.13	
		C =C _{INT}	24 MHz	0.51	
			48 MHz	0.92	
			4 MHz	0.32	
			8 MHz	0.37	
		$V_{DD} = 3.3 \text{ Volts}$ $C_{EXT} = 0 \text{ pF}$	16 MHz	0.76	
		$C = C_{INT} + C_{EXT} + C_{S}$	24 MHz	1.39	
			48 MHz	2.188	
			4 MHz	0.32	
		\/ 2.2.\/alta	8 MHz	0.64	
		$V_{DD} = 3.3 \text{ Volts}$ $C_{EXT} = 10 \text{ pF}$	16 MHz	1.25	
		$C = C_{INT} + C_{EXT} + C_{S}$	24 MHz	2.23	
	I/O current		48 MHz	4.442	
I _{SW}	consumption		4 MHz	0.49	mA
		$V_{DD} = 3.3 \text{ Volts}$	8 MHz	0.94	4
		$C_{EXT} = 22 \text{ pF}$ $C = C_{INT} + C_{EXT} + C_{S}$	16 MHz	2.38	
		S = SINT + SEXT + SS	24 MHz	3.99	
			4 MHz	0.64	
		$V_{DD} = 3.3 \text{ Volts}$ $C_{EXT} = 33 \text{ pF}$	8 MHz	1.25	
		$C = C_{INT} + C_{EXT} + C_{S}$	16 MHz	3.24	
			24 MHz	5.02	
		V _{DD} = 3.3 Volts	4 MHz	0.81	
		$C_{EXT} = 47 \text{ pF}$ $C = C_{INT} + C_{EXT} + C_{S}$	8 MHz	1.7	
		$C = C_{int}$	16 MHz	3.67	
		V _{DD} = 2.4 Volts	4 MHz	0.66	
		C _{EXT} = 47 pF	8 MHz	1.43	
		$C = C_{INT} + C_{EXT} + C_{S}$	16 MHz	2.45	
		$C = C_{int}$	24 MHz	4.97	

^{1.} C_S = 7 pF (estimated value)

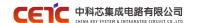
On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in *Table 27*. The MCU is placed under the following conditions:

all I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load)

- all peripherals are disabled unless otherwise mentioned
- the given value is calculated by measuring the current consumption
 - with all peripherals clocked off
 - with only one peripheral clocked on
- ambient operating temperature and V_{DD} supply voltage conditions summarized in Table 17

Table 18 Peripheral current consumption


Per	ripheral	Typical consumption at 25 °C	Unit	
	Bus matrix	3.7		
	DMA1	6.3		
	SRAM	0.7		
	Flash interface	15.2		
	CRC	1.61		
AHB	GPIOA	9.4	$\mu A/MHz$	
	GPIOB	11.6		
	GPIOC	1.9		
	GPIOF	0.8		
	All AHB	47.5		
	peripheral	47.5		
	APB bridge	2.6		
	SYSCFG	1.7		
	ADC ⁽³⁾	4.2		
	TIM1	17.1		
	SPI1	9.6		
	USART1	17.4		
	TIM16	8.2		
	TIM17	8.0		
APB	DBG(MCU)	0.5	$\mu A/MHz$	
	TIM2	17.4		
	TIM3	12.8		
	TIM14	6.0		
	WWDG	1.5		
	I2C1	5.1		
	PWR	1.2		
	All APB peripheral	110.9		

6.3.6 Wakeup time from low-power mode

The wake up time shown in *Table 29* is the wait time between the event and the execution of the first user instruction. The device goes into low-power mode after the WFE(wait event) instruction, and in the case of the WFI(wait interrupt) instruction, 16 CPU cycles must be added to the following sequence due to the interrupt delay in the architecture of the Cortex M0.

The SYSCLK clock source setting remains unchanged after being awakened from hibernation mode.

SYSCLK USES the default setting: HSI 8MHz during wake up from stop or standby mode. The wake source from the sleep and stop modes is in the event configured EXTI circuit for event mode. The source of wake up from standby mode is WKUP1 pin (PA0). All timing sequences are derived from tests conducted at ambient temperature and V_{DD}

power supply voltage conditions, summarized in Table 17.

Table 29. Low-power mode wakeup timings

0	nbol Parameter Conditions		Typ @Vdd= VddA						
Symbol	Parameter	Conditions	=2.0V	=2.4V	=2.7V	=3V	=3.3V	Max	Unit
		Regulator in run mode	3.2	3.1	2.9	2.9	2.8	5	
t _{WUSTOP}	Wakeup from Stop mode	Regulator in low-power mode	7.0	5.8	5.2	4.9	4.6	9	
t _{WUSTANDBY}	Wakeup from Standby mode		60.4	55.6	53.5	52	51	1	μs
t _{WUSLEEP}	Wakeup from Sleep mode			4 syste	em clock	cycles		-	

6.3.7 External clock source characteristics

High-speed external user clock generated from an external source

In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.

The external clock signal has to respect the I/O characteristics in *Section 6.3.14*. However, the recommended clock input waveform is shown in *Figure 13: High-speed external clock source AC timing diagram*.

Table 30. High-speed external user clock characteristics

Symbol	Parameter ⁽¹⁾	Min	Тур	Max	Unit	
f _{HSE_ext}	User external clock source frequency	1	8	32	MHz	
V _{HSEH}	OSC_IN input pin high level voltage	0.7V _{DDIOx}	-	V_{DDIOx}	V	
V _{HSEL}	OSC_IN input pin low level voltage	V _{SS}	- 0.3V _{DDIOx}] '	
$t_{w(\text{HSEH})}$ $t_{w(\text{HSEL})}$	OSC_IN high or low time	15	1	ı	ns	
$t_{r(HSE)}$ $t_{f(HSE)}$	OSC_IN rise or fall time	-	-	20	113	

^{1.} Guaranteed by design, not tested in production.

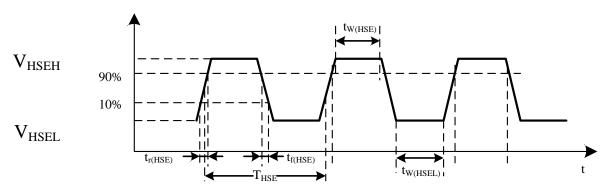


Figure 13. High-speed external clock source AC timing diagram

Low-speed external user clock generated from an external source

In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO.

The external clock signal has to respect the I/O characteristics in *Section 6.3.14*. However, the recommended clock input waveform is shown in *Figure 14*.

Table 31.	Low-speed ex	kternal usei	clock c	haracteristic	S

Symbol	Parameter ⁽¹⁾	Min	Тур	Max	Unit	
f _{LSE_ext}	User External clock source frequency	-	32.768	1000	kHz	
V _{LSEH}	OSC32_IN input pin high level voltage	0.7V _{DDIOx}	-	V_{DDIOx}	V	
V _{LSEL}	OSC32_IN input pin low level voltage	V _{SS}	1	0.3V _{DDIOx}	V	
$\begin{array}{c} t_{\text{w(LSEH)}} \\ t_{\text{w(LSEL)}} \end{array}$	OSC32_IN high or low time	450	-	-	ns	
t _{r(LSE)}	OSC32_IN rise or fall time	-	-	50	113	

1. Guaranteed by design, not tested in production.

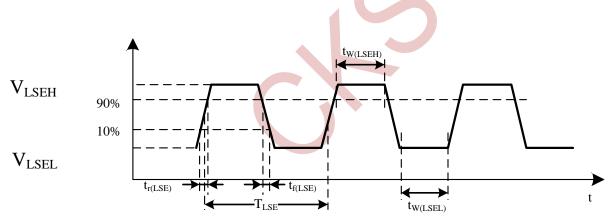


Figure 14. Low-speed external clock source AC timing diagram

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 32*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions ⁽¹⁾	Min ⁽²⁾	Тур	Max ⁽²⁾	Unit
f _{OSC_IN}	Oscillator frequency		4	8	32	MHz
R _F	Feedback resistor		-	200	-	kΩ
		During startup ⁽³⁾	-		8.5	
		$\begin{array}{c} \text{V}_{\text{DD}}\text{=-}3.3 \text{ V, } R_{\text{m}}\text{=-}30\Omega, \\ \text{CL}\text{=-}10 \text{ pF}@8 \text{ MHz} \end{array}$	-	0.5	-	mA
	HSE current consumption	V_{DD} =3.3V, R_{m} =30 Ω C_{L} =10pF @8MHz	-	0.4	-	
I _{DD}		V_{DD} =3.3V, R_m =45 Ω C_L =10pF @8MHz	-	0.5	-	
		V_{DD} =3.3V, R_m =30 Ω C_L =5pF @32MHz	-	0.8	-	
		V_{DD} =3.3V, R_{m} =30 Ω C_{L} =10pF @32MHz	-	1		
Яm	Oscillator transconductance	V_{DD} =3.3V, R_{m} =30 Ω C_{L} =20pF @32 MHz	-	1.5	-	mA/V
t _{SU(HSE)} ⁽⁴⁾	Startup time	V _{DD} is stabilized	-	2	-	ms

Table 32. HSE oscillator characteristics

- 1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
- 2. Guaranteed by design, not tested in production.
- 3. This consumption level occurs during the first 2/3 of the t_{SU(HSE)} startup time
- t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 20 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 15*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} .

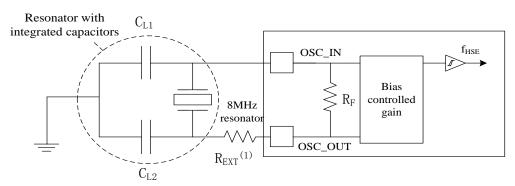


Figure 15. Typical application with an 8 MHz crystal

1. REXT value depends on the crystal characteristics.

Low-speed external clock generated from a crystal resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 33*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
		LSEDRV[1:0]=00 lower driving capability	-	0.5	0.9	
1	LSE current consumption	LSEDRV[1:0]= 01 medium low driving capability	-	-	1	
I _{DD} LSE	LSE current consumption	LSEDRV[1:0] = 10 medium high driving capability	-	-	1.3	μA
		LSEDRV[1:0]=11 higher driving capability	-	-	1.6	
		LSEDRV[1:0]=00 lower driving capability	5	-	-	
0	Oscillator	LSEDRV[1:0]= 01 medium low driving capability	8	-	-	µA/V
	transconductance	LSEDRV[1:0] = 10 medium high driving capability	1 15 1 - 1 -		-	μΑνν
		LSEDRV[1:0]=11 higher driving capability	25	-	-	

Table 33. LSE oscillator characteristics ($f_{LSE} = 32.768 \text{ kHz}$)

Startup time

t_{SU(LSE)}⁽²⁾

V_{DD} is stabilized

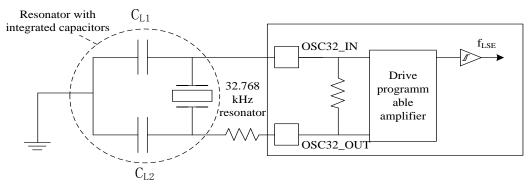


Figure 16. Typical application with a 32.768 kHz crystal

Note: An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden

s

^{1.} Guaranteed by design, not tested in production.

t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer

to add one.

6.3.8 Internal clock source characteristics

The parameters given in *Table 34* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 17: General operating conditions*. The provided curves are characterization results, not tested in production.

High-speed internal (HSI) RC oscillator

Table 34. HSI oscillator characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI}	Frequency		-	8		MHz
TRIM	HSI user trimming step		-	-	1 ⁽²⁾	%
DuCy _(HSI)	Duty cycle		45 ⁽²⁾	-	55 ⁽²⁾	%
	Accuracy of the HSI	T _A = -40~105 ℃	-2.8(3)	-	3.8(3)	%
ACC _{HSI}	ACC _{HSI} oscillator (factory calibrated) ⁽³⁾	T _A = -10~85 °C	-1.9 ⁽³⁾	-	2.3(3)	
	,	T _A = 0~85 ℃	-1.9 ⁽³⁾	-	2(3)	
		T _A = 0~70 ℃	-1.3 ⁽³⁾	-	2(3)	
		T _A =0~55 °C	-1 ⁽³⁾	-	2(3)	
		T _A = 25 ℃	-1	ı	1	%
t _{su(HSI)}	HSI oscillator startup time		1 ⁽²⁾	-	2 ⁽²⁾	μs
I _{DDA(HSI)}	HSI oscillator power consumption		-	80	100 ⁽²⁾	μΑ

^{1.} $V_{DD} = 3.3 \text{ V}$, $T_A = -40 \text{ to } 105 ^{\circ}\text{C}$ unless otherwise specified.

High-speed internal 14 MHz (HSI14) RC oscillator (dedicated to ADC)

Table 35. HSI14 oscillator characteristics (1)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI14}	Frequency		-	14	-	MHz
TRIM	HSI14 user-trimming step		-	-	1 ⁽²⁾	%
DuCy _(HSI14)	Duty cycle		45(2)	-	55(2)	%
	Accuracy of the HSI14 oscillator (factory calibrated) $T_A = -1$ $T_A = 0 \text{ to}$	$T_A = -40 \text{ to } 105 \text{ °C}$	-4.2 ⁽³⁾	ı	5.1 ⁽³⁾	%
ACC _{HSI14}		$T_A = -10 \text{ to } 85 ^{\circ}\text{C}$	-3.2 ⁽³⁾	ı	3.1 ⁽³⁾	
		T _A = 0 to 70 °C	-2.5 ⁽³⁾	-	$2.3^{(3)}$	
		T _A = 25 °C	-1	1	1	
t _{su(HSI14)}	HSI14 oscillator startup time		1(2)	-	2(2)	μs

^{2.} Guaranteed by design, not tested in production.

^{3.} With user calibration.

I _{DDA(HSI14)} HSI14 oscillator power consumption		-	100	-	μA	
--	--	---	-----	---	----	--

- 1. $V_{DD} = 3.3 \text{ V}$, $T_A = -40 \text{ to } 105 \,^{\circ}\text{C}$ unless otherwise specified.
- 2. Guaranteed by design, not tested in production.

Low-speed internal (LSI) RC oscillator

Table 36. LSI oscillator characteristics (1)

Symbol	Parameter	Min	Тур	Max	Unit
f _{LSI}	Frequency	30	40	50	kHz
t _{su(LSI)} ⁽²⁾	LSI oscillator startup time	-	-	85	μs
I _{DDA(LSI)} (2)	LSI oscillator power consumption	-	0.75	1.2	μΑ

- 1. $V_{DDA} = 3.3 \text{ V}$, $T_A = -40 \text{ to } 85 ^{\circ}\text{C}$ unless otherwise specified.
- 2. Guaranteed by design, not tested in production.

6.3.9 PLL characteristics

The parameters given in *Table 37* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 17: General operating conditions*.

Table 37. PLL characteristics

Symbol	Parameter		Value			
Symbol	raiailletei	Min	Тур	Max	Unit	
	PLL input clock ⁽¹⁾	1 ⁽²⁾	80	24 ⁽²⁾	MHz	
f _{PLL_IN}	PLL input clock duty cycle	40 ⁽²⁾	-	60 ⁽²⁾	%	
f _{PLL_OUT}	PLL multiplier output clock	16 ⁽²⁾	-	48	MHz	
t _{LOCK}	PLL lock time	-	-	200 ⁽²⁾	μs	
Jitter _{PLL}	Cycle-to-cycle jitter	-	-	300 ⁽²⁾	ps	

^{1.} Take care to use the appropriate multiplier factors to obtain PLL input clock values compatible with the range defined by $f_{\text{PLL_OUT}}$.

6.3.10 Memory characteristics

Flash memory

The characteristics are given at $T_A = -40$ to 105 °C unless otherwise specified.

Table 38. Flash memory characteristics

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit
t _{prog}	16-bit programming time	$T_A = -40 \text{ to } +105 ^{\circ}\text{C}$	40	53.5	-	μs
t _{ERASE}	Page (1 KB) erase time	$T_A = -40 \text{ to } +105 \text{ °C}$	20	30		ms
t _{ME}	Mass erase time	$T_A = -40 \text{ to } +105 ^{\circ}\text{C}$	20	30	•	ms

^{2.} Guaranteed by design, not tested in production.

	ı	Supply current	Write mode	-	-	10	mA
'	DD	Supply current	Erase mode	-	-	12	mA

^{1.} Guaranteed by design, not tested in production.

Table 39. Flash memory endurance and data retention

Symbol	Parameter	Conditions	Min ⁽¹⁾	Unit
N _{END}	Endurance	$T_A = -40 \text{ to } +105 ^{\circ}\text{C}$	10	kcycles
		1 kcycle ⁽²⁾ at T _A = 85 °C	20	Years
t _{RET}	Data retention	1 kcycle ⁽²⁾ at T _A = 105 °C		
		10 kcycle ⁽²⁾ at T _A = 55 °C		

^{1.} Data based on characterization results, not tested in production.

6.3.11 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in Table 40.

Table 40. EMS characteristics

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	$V_{DD} = 3.3 \text{ V, LQFP48, T}_{A} = +25 \text{ °C,} \\ f_{HCLK} = 48 \text{ MHz} \\ \text{conforms to IEC 61000-4-2}$	2B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V _{DD} and V _{SS} pins to induce a functional disturbance	$\begin{split} V_{DD} = 3.3 \text{ V, LQFP48, T}_{A} = +25 \text{ °C,} \\ f_{HCLK} = 48 \text{ MHz} \\ \text{conforms to IEC 61000-4-4} \end{split}$	4B

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and

^{2.} Cycling performed over the whole temperature range.

prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring.

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading.

Symbol	Parameter	Conditions	Monitored	Max vs. [f _{HSE} /f _{HCLK}]	Unit
Syllibol	raiametei	Conditions	frequency band	8/48 MHz	Oilit
		V 26V T 25°C	0.1 to 30 MHz	-11	
c	Peak level	V _{DD} = 3.6 V, T _A = 25 °C, LQFP48 package	30 to 130 MHz	21	dΒμV
S _{EMI}		compliant with IEC	130 MHz to 1GHz	21	
		61967-2	SAE EMI Level	4	-

Table 41. EMI characteristics

6.3.12 Electrical sensitivity characteristics

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard.

 Symbol
 Ratings
 Conditions
 package
 Class
 Maximum value⁽¹⁾
 Unit

 V_{ESD(HBM)}
 Electrostatic discharge voltage (human body model)
 T= +25 °C, conforming to JESD22-A114
 All
 2
 2000

Table 42. ESD absolute maximum ratings

V _{ESD(CDM)} E	Electrostatic discharge voltage charge device model)	T = +25 °C, conforming to ANSI/ESD	All	II	500	V	
-------------------------	--	------------------------------------	-----	----	-----	---	--

^{1.} Data based on characterization results, not tested in production.

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD 78A IC latch-up standard.

Table 43. Electrical sensitivities

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	T _A = +105 °C conforming to JESD78A	II level A

6.3.13 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DDIOx} (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (more than 5 LSB TUE), out of conventional limits of current injection on adjacent pins (more than $-5 \,\mu$ A) or other functional failure (reset occurrence or oscillator frequency deviation, for example).

The characterization results are given in Table 44.

Negative leakage current is caused by negative injection, while positive leakage current is caused by positive injection.

Table 44. I/O current injection susceptibility

Symbol	Description	Functional susceptibility		Unit
Symbol	Description	Negative injection	Positive injection	Unit
	Injected current on BOOT0	-0	NA	
	Injected current on all FT and FTf	– 5	NA	mA
I _{INJ}	Injected current on all TTa , TC and RST	– 5	+5	

6.3.14 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in *Table 45* are derived from tests performed under the conditions summarized in *Table 17: General operating conditions*. All I/Os are designed as CMOS and TTL compliant(In addition to BOOT0).

Table 45. I/O static characteristics

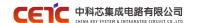
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		TC and TTa I/O	-	-	0.3 V _{DDIOx} +0.07 ⁽¹⁾	
V_{IL}	Low level input	FT and FTf I/O	-	-	0.475 V _{DDIOx} - 0.2 ⁽¹⁾	V
	voltage	BOOT0	-	-	0.3 V _{DDIOx} -0.3 ⁽¹⁾	
		All I/Os except BOOT0 pin	-	-	0.3 V _{DDIOx}	
		TC and TTa I/O	0.445 V _{DDIOx} +0.398 ⁽¹⁾	-	-	
V_{IH}	High level input	FT and FTf I/O	0.5 V _{DDIOx} +0.2 ⁽¹⁾	-	-	V
	voltage	ВООТ0	0.2 V _{DDIOx} +0.95 ⁽¹⁾	-	-	
		All I/Os except BOOT0 pin	0.7 V _{DDIOx}	-	-	
		TC and TTa I/O	-	200 ⁽¹⁾	-	
V_{hys}	Schmitt trigger hysteresis	FT and FTf I/O	-	100 ⁽¹⁾	-	mV
	Trydiorodio	ВООТО	-	300 ⁽¹⁾	-	
		TC, FT and FTf I/O TTa in digital mode V _{SS} ≤ V _{IN} ≤ V _{DD}		-	± 0.1	
l _{lkg}	Input leakage current (2)	TTa in digital mode V _{DDIOx} ≤ V _{IN} ≤ V _{DDA}	-	-	1	μA
-		TTa in analog mode $V_{SS} \le V_{IN} \le V_{DDA}$	-	-	± 0.2	
		FT and FTf I/O ⁽³⁾ V _{DDIOx} ≤ V _{IN} ≤ 5 V	-	-	10	
R_{PU}	Weak pull-up equivalent resistor ⁽⁴⁾	V _{IN} = V _{SS}	25	40	55	kΩ
R _{PD}	Weak pull-down equivalent resistor (4)	$V_{IN} = V_{DDIOx}$	25	40	55	kΩ
C _{IO}	I/O pin capacitance		-	5	-	pF

^{1.} Data based on design simulation only. Not tested in production.

All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in *Figure 17* for standard I/Os, and in *Figure 18* for

^{2.} Leakage could be higher than maximum value, if negative current is injected on adjacent pins. Refer to *Table 44: I/O current injection susceptibility*.

^{3.} To sustain a voltage higher than V_{DDIOx} +0.3 V, the internal pull-up/pull-down resistors must be disabled.


^{4.} Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimum (~10% order).

5 V tolerant I/Os.

The following curve is the result of design simulation, which has not been tested in production.

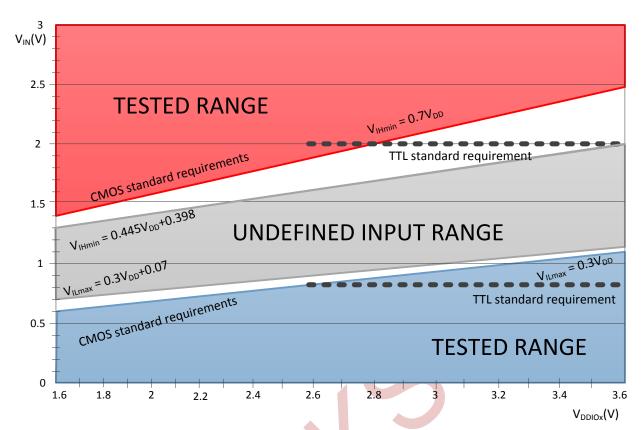


Figure 17. TC and TTa I/O input characteristics

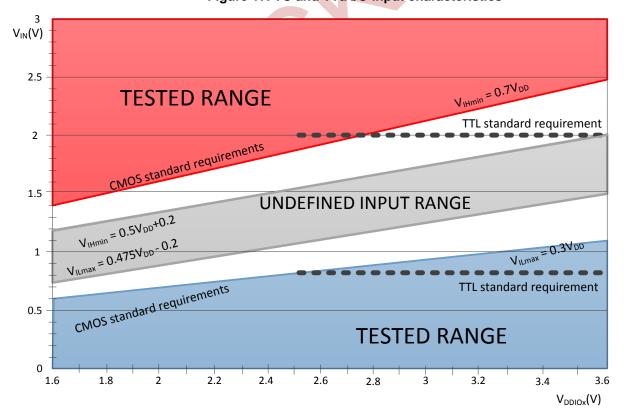


Figure 18. Five volt tolerant (FT and FTf) I/O input characteristics

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to \pm -8 mA, and sink or source up to \pm -20 mA (with a relaxed V_{OL}/V_{OH}).

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in *Section 6.2*:

- The sum of the currents sourced by all the I/Os on V_{DDIOX}, plus the maximum Run consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating ΣI_{VDD} (see *Table 15: Current characteristics*).
- The sum of the currents sunk by all the I/Os on V_{SS} plus the maximum Run consumption of the MCU sunk on V_{SS} cannot exceed the absolute maximum rating ΣI_{VSS} (see *Table 15: Current characteristics*).

Output voltage levels

Unless otherwise specified, the parameters given in the table below are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 17: General operating conditions*. All I/Os are CMOS and TTL compliant (FT, TTa or TC unless otherwise specified).

Table 46. Output voltage characteristics (1)

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL}	Output low level voltage for an I/O pin	CMOS port	-	0.4	
V _{OH}	Output high level voltage for an I/O pin	V _{DDIOx} ≥2.7 V	$V_{\rm DDIOx}$ -0.4	-	
V _{OL}	Output low level voltage for an I/O pin	TTL port I _{IO} = 20 mA	-	0.4	
V _{OH}	Output high level voltage for an I/O pin	V _{DDIOx} ≥2.7 V	2.4	-	
V _{OL} ⁽²⁾	Output low level voltage for an I/O pin	$ I_{IO} =20\text{mA}$	-	1.3	.,
V _{OH} ⁽²⁾	Output high level voltage for an I/O pin	$V_{DDIOx} \ge 2.7V$	V _{DDIOx} -1.3	-	V
V _{OL} ⁽²⁾	Output low level voltage for an I/O pin	l I _{IO} l = 6 mA	-	0.4	
V _{OH} ⁽²⁾	Output high level voltage for an I/O pin	11101 = 011114	$V_{\rm DDIOx}$ -0.4	-	
(0)	Output law laval value on for an ETf I/O	I _{IO} = 20 mA	-	0.4	
V _{OLFM+} (2)	Output low level voltage for an FTf I/O pin in FM+ mode	V _{DDIOx} ≥2.7 V			
		I _{IO} = 10 mA	-	0.4	

The I_{IO} current sunk by the device must always respect the absolute maximum rating specified in *Table 15:* Current characteristics and the sum of I_{IO} (I/O ports and control pins) must not exceed Σ I_{IO}.

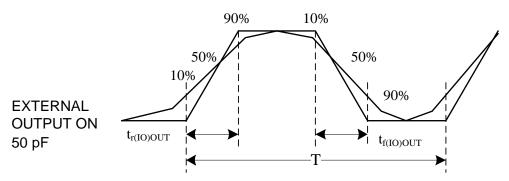
^{2.} Data based on characterization results. Not tested in production.

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 17* and *Table 47*, respectively.

Unless otherwise specified, the parameters given are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 17: General operating conditions*.

Table 47. I/O AC characteristics^{(1) (2)}


OSPEEDRy [1:0] value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Max	Unit
	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	2	MHz
x0	t _{f(IO)out}	Output high to low level fall time	C _L = 50 pF	-	125	ns
	t _{r(IO)out}	Output low to high level rise time		ı	125	113
	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	10	MHz
01	t _{f(IO)out}	Output high to low level fall time	C _L = 50 pF	-	25	ns
	t _{r(IO)out}	Output low to high level rise time	160	-	25	115
			$C_L = 30 \text{ pF}, V_{DDiox} \ge 2.7 \text{ V}$	-	50	
	f _{max(IO)out} M	Maximum frequency ⁽³⁾	$C_L = 50 \text{ pF}, V_{DDiox} \ge 2.7 \text{ V}$		30	MHz
			$C_L = 50 \text{ pF}, 2.4 \text{V} \le \text{V}_{\text{DDiox}} < 2.7 \text{ V}$		20	
11	truo	Output high to low level	$C_L = 30 \text{ pF}, V_{DDiox} \ge 2.7 \text{ V}$	-	5	
	t _{f(IO)out}	fall time	$C_L = \frac{50}{9} \text{ pF}, V_{DDiox} \ge 2.7 \text{ V}$	-	8	ns
			C_L = 50 pF, 2.4V $\leq V_{DDiox} < 2.7 V$	-	12	110
	t _{r(IO)out}	Output low to high level	$C_L = 30 \text{ pF}, V_{DDiox} \geqslant 2.7 \text{ V}$	-	5	
	r(IO)out	rise time	$C_L = 50 \text{ pF}, V_{DDiox} \geqslant 2.7 \text{ V}$	-	8	
			C_L = 50 pF, 2.4V $\leq V_{DDiox} <$ 2.7 V	-	12	
	f _{max(IO)out}	Maximum frequency ⁽²⁾		-	2	MHz
FM+ configuration	t _{f(IO)out}	Output high to low level fall time	$C_L = 50 \text{ pF},$ $V_{DDiox} \ge 2.4 \text{ V}$	-	12	nc
(4)	t _{r(IO)out}	Output low to high level rise time	v DDiox ≈ 2.4 v	-	34	ns
	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller		10	-	ns

^{1.} The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the manual for a description of GPIO Port configuration register.

- 3. The maximum frequency is defined in Figure 17.
- 4. When FM+ configuration is set, the I/O speed control is bypassed.

^{2.} Guaranteed by design, not tested in production.

Maximum frequency is achieved if $(t + t \le 2/3)T$ and if the duty cycle is (45-55%) when loaded by 50 pF

Figure 19. I/O AC characteristics definition

6.3.15 NRST pin characteristics

The NRST pin input driver uses the CMOS technology. It is connected to a permanent pull-up resistor.

Unless otherwise specified, the parameters given in the table below are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in *Table 17: General operating conditions*.

		•		/		
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL(NRST)}	NRST input low level voltage			-	0.3V _{DD} +0.07 ⁽¹⁾	V
V _{IH(NRST)}	NRST input high level voltage	-	0.455V _{DD} +0.398 ⁽¹⁾	-	-	V
V _{hys(NRST)}	NRST Schmitt trigger voltage hysteresis		-	200	-	mV
R _{PU}	Weak pull-up equivalent resistor ⁽²⁾	$V_{IN} = V_{SS}$	25	40	55	kΩ
V _{F(NRST)}	NRST input filtered pulse	-	-	-	100 ⁽¹⁾	ns
		2.7V ≤ V _{DD} < 3.6V	300 ⁽¹⁾	-	-	
V _{NF(NRST)}	NRST input not filtered pulse	2.4V ≤ V _{DD} < 3.6 V	500 ⁽¹⁾	-	-	ns

Table 48. NRST pin characteristics

^{1.} Guaranteed by design, not tested in production.

^{2.} The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order).

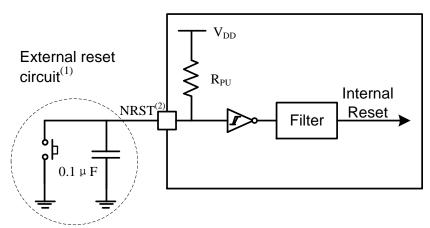


Figure 20. Recommended NRST pin protection

- 1. The reset network protects the device against parasitic resets.
- 2. The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in *Table 48: NRST pin characteristics.* Otherwise the reset will not be taken into account by the device.

6.3.16 12-bit ADC characteristics

Unless otherwise specified, the parameters given in *Table 49* are preliminary values derived from tests performed under ambient temperature, f_{PCLK2} frequency and V_{DDA} supply voltage conditions summarized in *Table 17*: *General operating conditions*.

Note: It is recommended to perform a calibration after each power-up.

Table 49. ADC characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DDA}	Analog supply voltage for ADC ON		2.4	-	3.6	V
I _{DDA(ADC)}	ADC current consumption ⁽¹⁾	$V_{DD} = V_{DDA} = 3.3V$	-	0.9	-	mA
f _{ADC}	ADC clock frequency		0.6	-	14	MHz
$f_{S}^{(2)}$	Sampling rate		0.05	-	1	MHz
c (2)	External trigger frequency	f _{ADC} = 14 MHz	0.043	-	1	kHz
$f_{TRIG}^{(2)}$	External trigger frequency		-	-	17	1/f _{ADC}
V _{AIN}	Conversion voltage range		0	-	V_{DDA}	V
R _{AIN} ⁽²⁾	External input impedance	See <i>Equation 1</i> and <i>Table 50</i> for details	-	-	50	kΩ
R _{ADC} ⁽²⁾	Sampling switch resistance		-	-	1	kΩ
C _{ADC} ⁽²⁾	Internal sample and hold capacitor		-		8	pF
4 (2)	Calibration time	f _{ADC} = 14 MHz	5.9 83		•	μs
t _{CAL} ⁽²⁾	Calibration time					1/f _{ADC}
W _{LATENCY} ⁽²⁾	ADC_CR register write delay	ADC clock=HSI14	1.5ADC cycles +2f _{PCLK} cycles	-	1.5ADC cycles +3f _{PCLK} cycles	
WEATENCT	uelay	ADC clock=PCLK/2	-	4.5	-	f _{PCLK} cycle
		ADC clock= PCLK/4	-	8.5	-	f _{PCLK} cycle
		$f_{ADC} = f_{PCLK}/2 = 14 \text{ MHz}$	(0.196		μs
		$f_{ADC} = f_{PCLK}/2$		5.5		1/f _{PCLK}
$t_{latr}^{(2)}$	Trigger conversion latency	$f_{ADC} = f_{PCLK}/4 = 12 \text{ MHz}$	(0.219		μs
		$f_{ADC} = f_{PCLK}/4$		10.5	T	1/f _{PCLK}
		$f_{ADC} = f_{HSI14} = 14 \text{ MHz}$	0.179	-	0.250	μs
Jitter _{ADC}	ADC jitter on trigger conversion	$f_{ADC} = f_{HSI14}$	-	1	-	$1/f_{\mathrm{HSI14}}$
$t_{S}^{(2)}$	Sampling time	f _{ADC} = 14 MHz	0.107	-	17.1	μs
			1.5	-	239.5	1/f _{ADC}
t _{STAB} ⁽²⁾	Power-up time		14			μs
t _{CONV} ⁽²⁾	Total conversion time (including sampling time)	f _{ADC} = 14 MHz	1 14 to 252 (t _S fo successive app			μs 1/f _{ADC}

^{3.} The IDDA will consume an additional 100 microns of current and IDD will consume an additional 60 microns during the sampling change (12.5 x ADC clock cycles).

^{1.} Guaranteed by design, not tested in production.

Equation 1: R_{AIN} max formula

$$R_{AIN} < \frac{T_S}{f_{ADC} \times C_{ADC} \times In(2^{N+2})} - R_{ADC}$$

The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).

	Table 50. Italy max for Table 1 it in 12						
T _s (cycles)	t _S (µs)	R_{AIN} max $(k\Omega)^{(1)}$					
1.5	0.11	0.4					
7.5	0.54	5.9					
13.5	0.96	11.4					
28.5	2.04	25.2					
41.5	2.96	37.2					
55.5	3.96	50					
71.5	5.11	NA					
239.5	17.1	NA					

Table 50. R_{AIN} max for $f_{ADC} = 14$ MHz

^{1.} Guaranteed by design, not tested in production.

Table 51. AD	C acc	curacy ⁽¹⁾⁽²⁾⁽³⁾
--------------	-------	-----------------------------

Symbol	Parameter	Test conditions	Тур	Max ⁽⁴⁾	Unit
ET	Total unadjusted error		±1.3	±2	
EO	Offset error	f _{PCLK} = 48 MHz,	±1	±1.5	
EG	Gain error	f_{ADC} = 14 MHz, R_{AIN} < 10 k Ω , V_{DDA} = 3 V to 3.6 V	±0.5	±1.5	LSB
ED	Differential linearity error	T _A = 25 °C	±0.7	±1	
EL	Integral linearity error		±0.8	±1.5	
ET	Total unadjusted error		±3.3	±4	
EO	Offset error	f _{PCLK} = 48 MHz,	±1.9	±2.8	
EG	Gain error	f_{ADC} = 14 MHz, R_{AIN} < 10 $k\Omega$, V_{DDA} = 2.7 V to 3.6 V	±2.8	±3	LSB
ED	Differential linearity error	$T_A = -40 \text{ to } 105 \text{ °C}$	±0.7	±1.3	
EL	Integral linearity error		±1.2	±1.7	
ET	Total unadjusted error		±3.3	±4	
EO	Offset error	f _{PCLK} = 48 MHz,	±1.9	±2.8	
EG	Gain error	f_{ADC} = 14 MHz, R_{AIN} < 10 $k\Omega$, V_{DDA} = 2.4 V to 3.6 V	±2.8	±3	LSB
ED	Differential linearity error	T _A = 25 °C	±0.7	±1.3	
EL	Integral linearity error		±1.2	±1.7	

^{1.} ADC DC accuracy values are measured after internal calibration.

^{2.} ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 6.3.14 does not affect the ADC accuracy.

- 3. Better performance may be achieved in restricted V_{DDA}, frequency and temperature ranges.
- 4. Data based on characterization results, not tested in production.

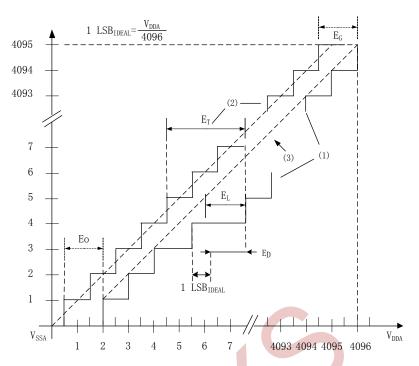


Figure 21. ADC accuracy characteristics

- (1) Example of an actual transfer curve
- (2) The ideal transfer curve
- (3) End point correlation line

E_T=Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves.

Eo=Offset Error: deviation between the first actual transition and the first ideal one.

E_G=Gain Error: deviation between the last ideal transition and the last actual one.

E_D=Differential Linearity Error: maximum deviation between actual steps and the ideal one.

E_L=Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line.

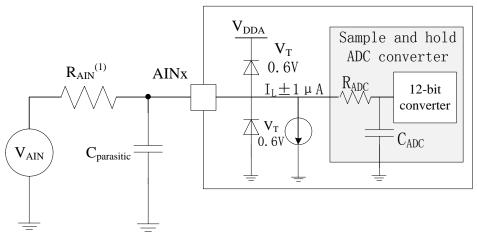


Figure 22. Typical connection diagram using the ADC

- 1. Refer to Table 49: ADC characteristics for the values of RAIN, RADC and CADC.
- Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy this, fADC should be reduced.

General PCB design guidelines

Power supply decoupling should be performed as shown in *Figure 11: Power supply scheme*. The 10 nF capacitor should be ceramic (good quality) and it should be placed as close as possible to the chip.

6.3.17 Temperature sensor characteristics

Table 52. TS characteristics

Symbol	Parameter	Min	Тур	Max	Unit
T _L ⁽¹⁾	V _{SENSE} linearity with temperature	-	±1	±2	°C
Avg_Slope ⁽¹⁾	Average slope	4.0	4.3	4.6	mV/°C
V ₃₀	Voltage at 30 °C ± 5 °C	1.34	1.43	1.52	V
t _{START} (1)	Startup time	4	-	10	μs
t _{S_temp} (1)	ADC sampling time when reading the temperature	17.1	-	-	μs

- 1. Guaranteed by design, not tested in production.
- 2. In the measurement of V_{DDA} = 3.3V±10mV, ADC conversion results of V₃₀ are stored in TS_CAL1 byte.

6.3.18 V_{BAT} monitoring characteristics

Table 53. V_{BAT} monitoring characteristics

Symbol	Parameter	Min	Тур	Max	Unit
R	Resistor bridge for V _{BAT}	-	2 x 50	-	kΩ
Q	Ratio on V _{BAT} measurement	-	2	-	
Er ⁽¹⁾	Error on Q	-1	-	+1	%
T _{S_vbat} ⁽¹⁾⁽²⁾	ADC sampling time when reading the V _{BAT} 1mV accuracy	4	-	-	μs

^{1.} Guaranteed by design, not tested in production.

6.3.19 Timer characteristics

The parameters given in *Table 54* are guaranteed by design.

Refer to Section 6.3.14: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Table 54. TIMx characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t (TDA)	Timer resolution time		-	1	-	t _{TIMxCLK}
t _{res(TIM)}	Timer resolution time	f _{TIMxCLK} = 48 MHz	-	20.8	-	ns
f	Timer external clock		-	f _{TIMxCLK} /2	-	MHz
f _{EXT}	requency on CH1 to CH4	f _{TIMxCLK} = 48 MHz	-	24	-	MHz
tooures	16-bit counter clock period		-	2^{16}	-	t _{TIMxCLK}
tCOUNTER	10-bit counter clock period	f _{TIMxCLK} = 48 MHz	-	1365	-	μs
	Maximum possible count		-	2^{32}	-	t _{TIMxCLK}
t _{MAX_COUNT}	with 32-bit counter	f _{TIMxCLK} = 48 MHz	-	89.48	-	s

Table 55. IWDG min/max timeout period at 40 kHz (LSI) (1)

Prescaler divider	PR[2:0] bits	Min timeout RL[11:0]= 0x000	Max timeout RL[11:0]= 0xFFF	Unit
/4	0	0.1	409.6	
/8	1	0.2	819.2	
/16	2	0.4	1638.4	
/32	3	0.8	3276.8	ms
/64	4	1.6	6553.6	
/128	5	3.2	13107.2	
/256	6 or 7	6.4	26214.4	

^{1.} These timings are given for a 40 kHz clock but the microcontroller's internal RC frequency can vary from 30 to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty.

Table 56. WWDG min-max timeout value @48 MHz (PCLK)

Prescaler	WDGTB	Min timeout value	Max timeout value	Unit
1	0	0.0853	5.4613	
2	1	0.1706	10.9226	ma
4	2	0.3413	21.8453	ms
8	3	0.6826	43.6906	

6.3.20 Communication interfaces

I²C interface characteristics

I2C interface conforms to the standard I2C bus specification and user manual timing requirements:

Standard-mode(Sm): Bit rate up to 100kbit/s

- Fast-mode(Fm): Bit rate up to 400kbit/s
- Fast-mode Plus(Fm+): Bit rate up to1Mbit/s

When the I2C peripherals are properly configured, the I2C timing requirements are guaranteed by the design (according to the user manual).

SDA and SCL I/O requirements meet the following limitations: the I/O pins SDA and SCL are mapped to are not "true" open- drain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DD} is disabled, but is still present. Only FTf I/O pins support maximum Fm+ low level output current requirements. According to section 6.3.14, I2C I/O features. All I2C SDA and SCL I/O are embedded with an analog filter. The characteristics of the simulated filter are shown in the following table:

Table 57. I2C analog filter characteristics⁽¹⁾

Symbol	Parameter	Min	Max	Unit
t _{AF}	Pulse width of spikes that are suppressed by the analog filter	50 ⁽²⁾	260 ⁽³⁾	ns

- 1. Guaranteed by design, not tested in production.
- 2. Peaks with width lower than $t_{AF\left(min\right)}$ are filtered.
- 3. Peaks wider than $t_{AF(min)}$ are not filtered.

SPI / I²Scharacteristics

Unless otherwise specified, the parameters given in *Table 58* are derived from tests performed under ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 17: General operating conditions*.

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics

Table 58. SPI characteristics(1)

Symbol	Parameter	Conditions	Min	Max	Unit
f _{SCK}	CDI algely fraguency	Master mode	-	18	MU
1/t _{c(SCK)}	SPI clock frequency	Slave mode	-	18	MHz
t _{r(SCK)}	SPI clock rise and fall time	Capacitive load: C = 15 pF	-	6	ns
t _{su(NSS)} (1)	NSS setup time	Slave mode	4Tpclk	-	
t _{h(NSS)} (1)	NSS hold time	Slave mode	2Tpclk + 10	-	
t _{w(SCKH)} ⁽¹⁾ t _{w(SCKL)} ⁽¹⁾	SCK high and low time	Master mode, f _{PCLK} = 36 MHz, presc = 4	Tpclk/2 -2	Tpclk/2 + 1	
t _{su(MI)} (1)	Data input actus time	Master mode	4	-	
t _{su(SI)} (1)	Data input setup time	Slave mode	5	-	
t _{h(MI)} (1)	Data input hald time	Master mode	4	-	
t _{h(SI)} ⁽¹⁾	Data input hold time	Slave mode	5	-	ns
t _{a(SO)} (1)(2)	Data output access time	Slave mode, f _{PCLK} = 20 MHz	0	3Tpclk	
t _{dis(SO)} (1)(3)	Data output disable time	Slave mode	0	18	

t _{v(SO)} (1)	Data output valid time	Slave mode (after enable edge)	-	22.5	
t _{v(MO)} ⁽¹⁾	Data output valid time	Master mode (after enable edge)	-	6	
t _{h(SO)} ⁽¹⁾	Data output hold time	Slave mode (after enable edge)	11.5	-	
t _{h(MO)} ⁽¹⁾	Data output noid time	Master mode (after enable edge)	2	-	
DuCy(SCK)	SPI slave input clock duty cycle	Slave mode	25	75	%

- 1. Data based on characterization results, not tested in production.
- 2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.
- 3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z

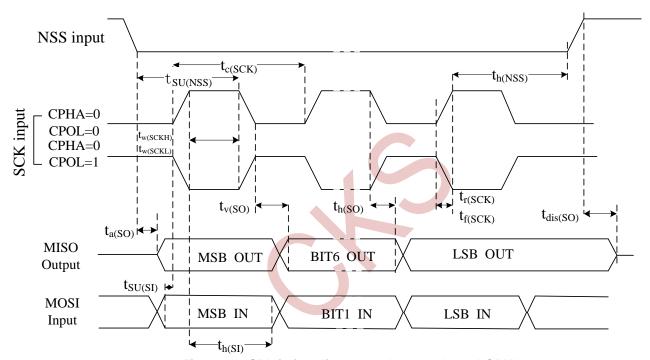
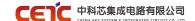
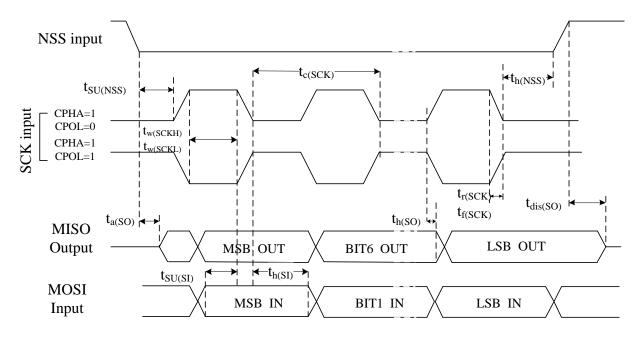




Figure 23. SPI timing diagram - slave mode and CPHA = 0

1. Measurement points are done at CMOS levels: $0.3V_{DD}$ and $0.7V_{DD}$.

Figure 24. SPI timing diagram - slave mode and CPHA = 1

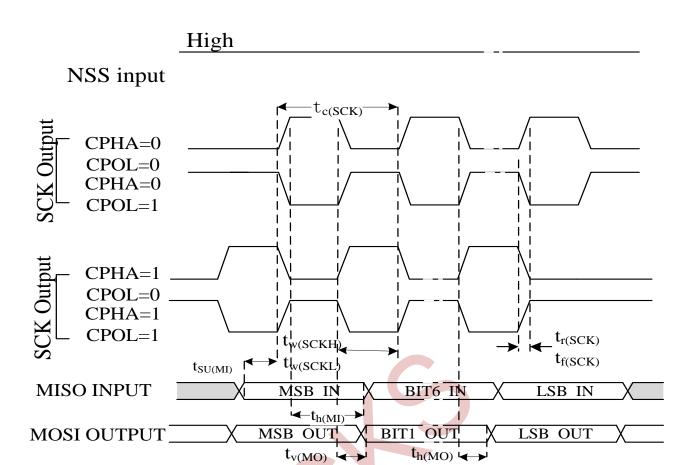


Figure 25. SPI timing diagram - master mode 1. Measurement points are done at CMOS levels: 0.3V_{DD} and 0.7V_{DD}.

Table 59. I²S characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Max	Unit
f _{CK}	I ² S clock frequency	Master mode (data: 16 bits, Audio frequency = 48 kHz)	1.597	1.601	MHz
1/t _{c(CK)}		Slave mode	0	6.5	
t _{r(CK)}	I ² S clock rise time	Consolitive load C = 15 pE	-	10	
t _{f(CK)}	I ² S clock fall time	Capacitive load C _L = 15 pF	-	12	
t _{w(CKH)} (1)	I2S clock high time	Master f _{PCLK} = 16 MHz, audio	306	-	
t _{w(CKL)} (1)	I2S clock low time	frequency = 48 kHz	312	-	
t _{v(WS)} (1)	WS valid time	Master mode	2	-	ns
t _{h(WS)} (1)	WS hold time	Master mode	2	-	
t _{su(WS)} (1)	WS setup time	Slave mode	7	-	
t _{h(WS)} (1)	WS hold time	Slave mode	0	-	
DuCy(SCK)	I2S slave input clock duty cycle	Slave mode	25	75	%
t _{su(SD_MR)} (1)	Data input setup time	Master receiver	6	-	
t _{su(SD_SR)} (1)	Data input setup time	Slave receiver	2	-	
t _{h(SD_MR)} (1)(2)	Data input hold time	Master receiver	4	-	
t _{h(SD_SR)} (1)(2)	Data input hold time	Slave receiver	0.5	-	
t _{v(SD_ST)} (1)(2)	Data output valid time	Slave transmitter (after enable edge)	-	20	ns
t _{h(SD_ST)} (1)	Data output hold time	Slave transmitter (after enable edge)	13	-	
t _{v(SD_MT)} (1)(2)	Data output valid time	Master transmitter (after enable edge)	-	4	
t _{h(SD_MT)} (1)	Data output hold time	Master transmitter (after enable edge)	0	-	

^{1.} Data based on design simulation and/or characterization results, not tested in production.

^{2.} Depends on f_{PCLK} . For example, if f_{PCLK} =8 MHz, then T_{PCLK} =1/ f_{PLCLK} =125 ns.

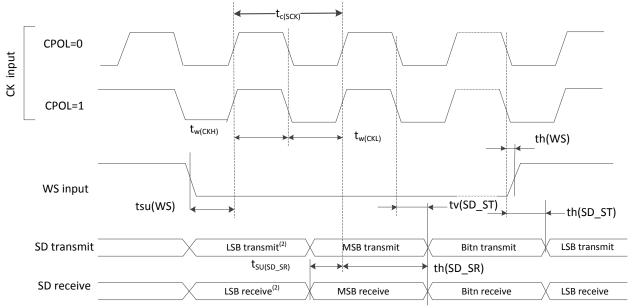


Figure 26. I2S slave timing diagram (Philips protocol)

- 1. Measurement points are done at CMOS levels: 0.3 x VDD and 0.7 x VDD.
- 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

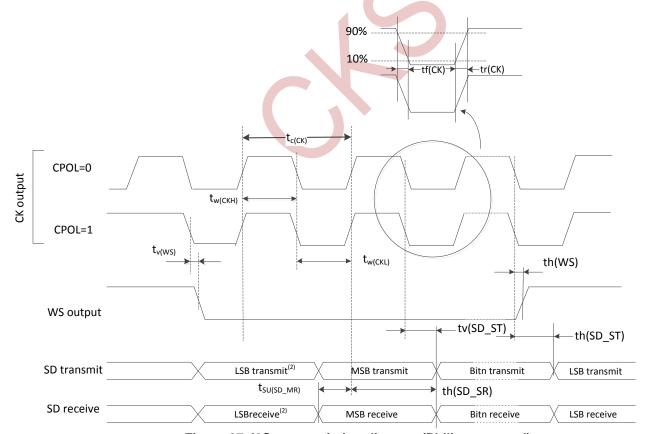


Figure 27. I2S master timing diagram (Philips protocol)

- 1. Data based on characterization results, not tested in production.
- LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

7 Package characteristics

7.1 Package mechanical data

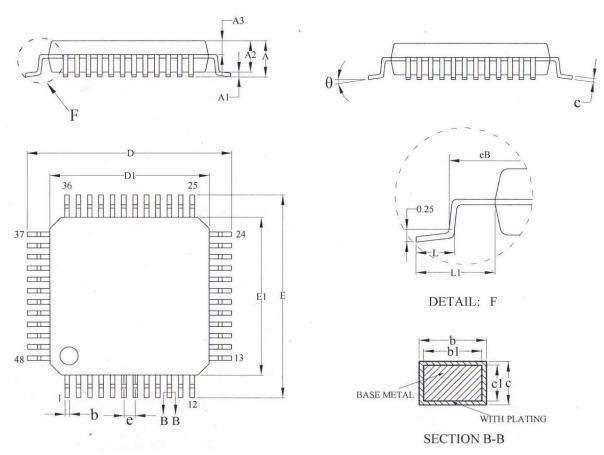


Figure 28. LQFP48 - 7 x 7 mm, 48 pin low-profile quad flat package outline

Cumbal		millimeters	
Symbol	Min	Тур	Max
A	-	-	1.60
A1	0.05	-	0.15
A2	1.35	1.40	1.45
A3	0.59	0.64	0.69
b	0.18	-	0.26
b1	0.17	0.20	0.23
С	0.13	-	0.17
c1	0.12	0.13	0.14
D	8.80	9.00	9.20
D1	6.90	7.00	7.10
E	8.80	9.00	9.20
E1	6.90	7.00	7.10
eB	8.10	-	8.25
е	0.50BSC		
L	0.40		0.65
L1		1.00REF	
θ	0°		7°

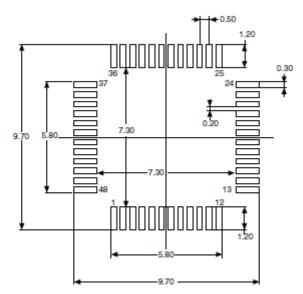


Figure 29. LQFP48 recommended footprint

- 1. Drawing is not to scale.
- 2. Dimensions are in millimeters.

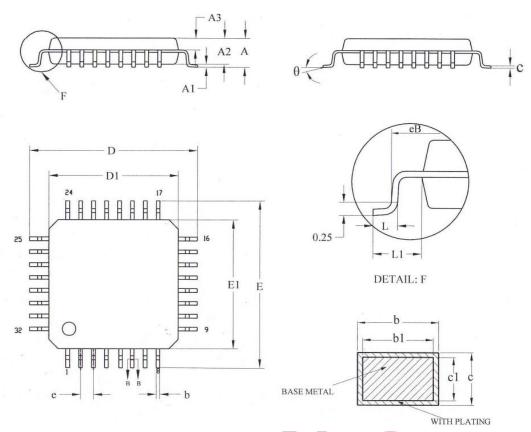


Figure 30. LQFP32 - 7 x 7mm 32-pin low-profile quad flat package outline

Cymph al	millimeters		
Symbol	Min	Тур	Max
Α	-	-	1.60
A1	0.05	-	0.25
A2	1.35	1.40	1.45
A3	0.59	0.64	0.69
b	0.33	-	0.41
b1	0.32	0.35	0.38
С	0.13	-	0.17
c1	0.12	0.13	0.14
D	8.80	9.00	9.20
D1	6.90	7.00	7.10
Е	8.80	9.00	9.20
E1	6.90	7.00	7.10
eB	8.10	-	8.25
е		0.50BSC	
L	0.40	-	0.65
L1		1.00REF	
θ	0°	-	7°

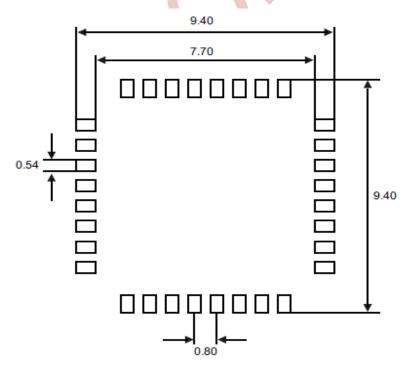


Figure 31. LQFP32 recommended footprint

- 1. Drawing is not to scale.
- 2. Dimensions are in millimeters.

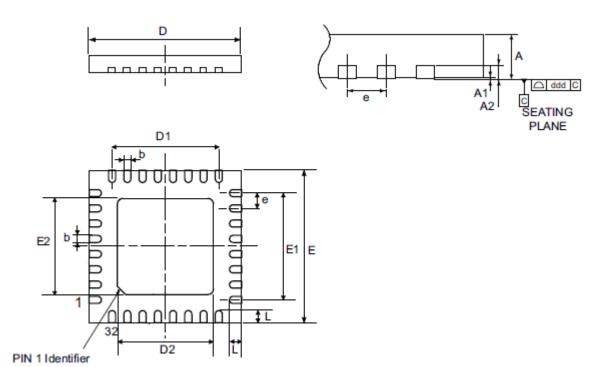


Figure 32. LQFP32 – 7 x 7mm 32-pin low-profile quad flat package outline

Table 62. UFQFPN32 package mechanical data

Symbol	millimeters		
Symbol	Min	Тур	Max
A	0.500	0.550	0.600
A1	0.000	0.020	0.050
A3	-	0.152	-
b	0.180	0.230	0.280
D	4.900	5.000	5.100
D1	3.400	3.500	3.600
D2	3.400	3.500	3.600
Е	4.900	5.000	5.100
E1	3.400	3.500	3.600
E2	3.400	3.500	3.600
e	-	0.500	-
L	0.300	0.400	0.500
ddd	-		0.080

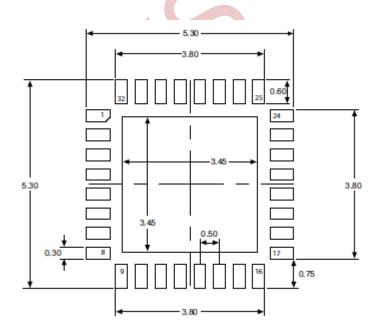


Figure 33. UFQFPN32 recommended footprint

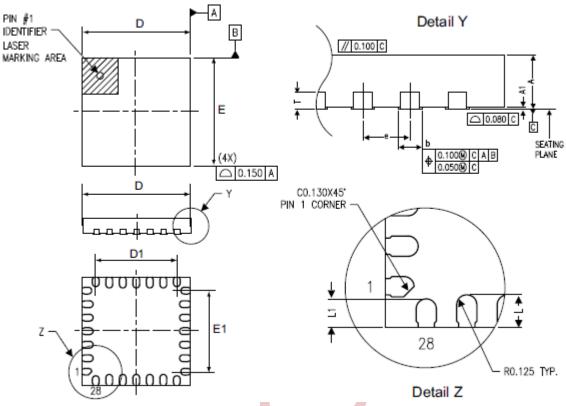


Figure 34. UFQFPN28 package outline

Table 63. UFQFPN28 package mechanical data

Symbol		millimeters	
Symbol	Min	Тур	Max
A	0.500	0.550	0.600
A1	-	0.000	0.050
D	3.900	4.000	4.100
D1	2.900	3.000	3.100
Е	3.900	4.000	4.100
E1	2.900	3.000	3.100
L	0.300	0.400	0.500
L1	0.250	0.350	0.450
T	-	0.152	-
b	0.200	0.250	0.300
e	-	0.500	-

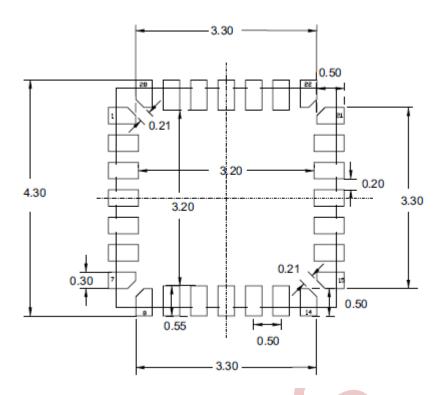


Figure 35. UFQFPN32 recommended footprint

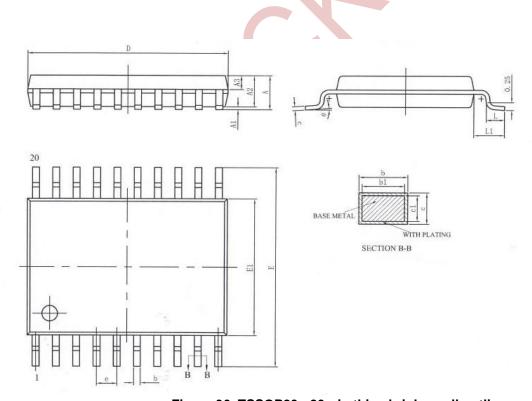


Figure 36. TSSOP20 - 20-pin thin shrink small outline

Symbol	millimeters		
Symbol	Min	Тур	Max
А	-	-	1.20
A1	0.05	-	0.15
A2	0.80	1.00	1.05
A3	0.39	0.44	0.49
b	0.20	-	0.29
b1	0.19	0.22	0.25
С	0.13	-	0.18
c1	0.12	0.13	0.14
D	6.40	6.50	6.60
E1	4.30	4.40	4.50
E	6.20	6.40	6.60
е	0.65BSC		
L	0.45	0.60	0.75
L1		1.00REF	
θ	0°	-	8°

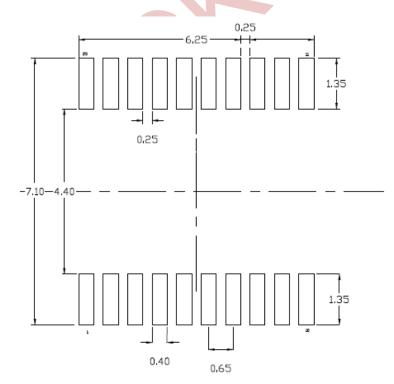


Figure 37. TSSOP20 recommended footprint

1. Dimensions are in millimeters

7.2 Thermal characteristics

The maximum chip junction temperature (T_J max) must never exceed the values given in *Table 17: General operating conditions*.

The maximum chip-junction temperature, T_J max, in degrees Celsius, may be calculated using the following equation:

$$T_J \max = T_A \max + (P_D \max x \Theta_{JA})$$

Where:

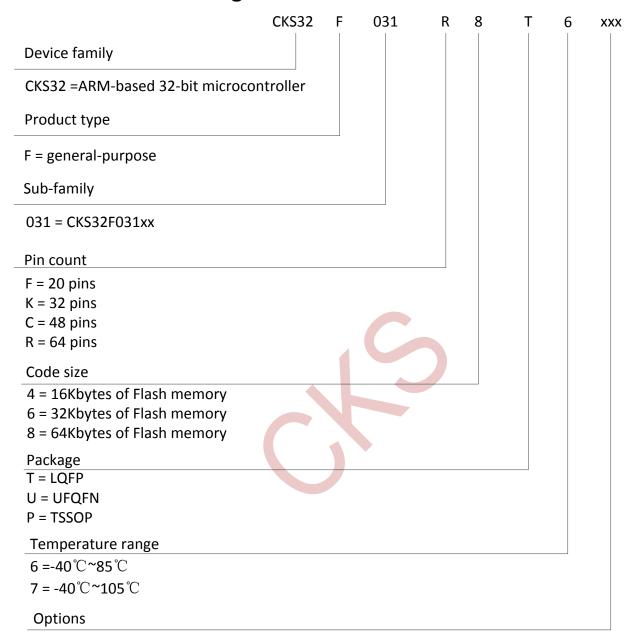
- T_A max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in °C/W,
- P_D max is the sum of P_{INT} max and $P_{I/O}$ max (P_D max = P_{INT} max + $P_{I/O}$ max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

P_{I/O} max represents the maximum power dissipation on output pins where:

$$P_{I/O} \max = \Sigma (V_{OL} \times I_{OL}) + \Sigma ((V_{DD} - V_{OH}) \times I_{OH}),$$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit
	Thermal resistance junction-ambient LQFP48 - 7 x 7 mm	55	
	Thermal resistance junction-ambient LQFP32 - 7 x 7 mm	56	
Θ_{JA}	Thermal resistance junction-ambient UFQFPN32–5x5mm	38	°C/W
	Thermal resistance junction-ambient UFQFPN28–4x4mm	118	
	Thermal resistance junction-ambient TSSOP20 - 6.5 × 6.4 mm	76	


Table 65. Package thermal characteristics

7.2.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org

8 Part numbering

TR = tape and real

9 Revision history

Table 66. Document revision history

Date	Revision	Changes
23-Sep-2019	1	Initial release

