

### CMT826X 高速六通道增强型数字隔离器

## 1 特性

- 安全相关认证
  - DIN VDE V 0884-11: 2017-01
  - 符合 UL 1577 组件认证
  - CSA 认证,符合 IEC 60950-1, IEC 62368-1, IEC 61010-1 and IEC 60601-1 终端设备标准
  - 符合 GB4943.1-2022 的 CQC 认证
  - 符合 EN 60950-1, EN 62368-1 和 EN 61010-1 标准的 TUV 认证。
- 增强电磁兼容性(EMC)
  - 系统级 ESD、EFT、浪涌抗扰性
  - ±8kV IEC 61000-4-2 跨隔离栅接触放电保护
  - 低辐射
- 数据率: 高达 150Mbps
- 宽电源电压范围: 2.5 V 至 5.5 V
- 工作环境温度范围: -40°C to125°C
- 稳健可靠的隔离栅:
  - 40 年以上的预期使用寿命
  - 高达 **5 kV**<sub>RMS</sub> 隔离额定值
  - 高达 8 kV 浪涌能力
  - ± 250 kV/µs 典型 CMTI
- 默认输出高电平和低电平选项
- 低功耗, 1 Mbps 时每通道的电流典型值为 1.5 mA
- 低传播延迟: 典型值为 9 ns (由 5V 电源供电)
- SOIC-16 封装 (宽体和窄体)

## 2 应用

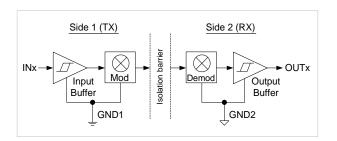
- 工业自动化
- 新能源汽车
- 光伏逆变器
- 电机控制
- 隔离式 SPI
- 通用多通道隔离

## 3 描述

CMT826X 为高性能六通道数字隔离器,该产品 采用二氧化硅(SiO2) 绝缘栅,支持高达 5.7kVrms 隔 离电压。

该数字隔离器用于两个不同电源域间通讯,以防 止数据总线或其他电路上的噪声电流进入本地接地或 者干扰及损坏敏感电路。

CMT826X 具有多达六路正向通道或三路反向通道。如果输入功率或信号出现损失,CMT826X1 默认输出高电平而 CMT826X0 默认输出低电平,详见"功能模式"相关章节描述。.


该器件能够以较低的功耗实现高电磁抗扰度和低辐射。CMT826X 采用创新性芯片设计和布局,显著增强了器件电磁兼容性,可满足系统级 ESD、EFT、浪涌和辐射方面的合规要求。

CMT826X 系列芯片同时支持 SOIC-16 宽体及窄体封装。

### 芯片订购信息

| 芯片型号             | 封装               | 尺寸<br>(mm x mm) |  |  |  |
|------------------|------------------|-----------------|--|--|--|
| CMTOOCY          | NB(N)SOIC-16 窄体  | 9.90 x 3.90     |  |  |  |
| CMT826X          | WB(W) SOIC-16 宽体 | 10.30 x 7.50    |  |  |  |
| 更多订购信息详见第 14 章节。 |                  |                 |  |  |  |

#### 简化原理图



# 目 录

| 1  | 特性                         | 1  |
|----|----------------------------|----|
| 2  | 应用                         | 1  |
| 3  | 描述                         | 1  |
| 4  | 绝对最大额定值                    | 3  |
|    | 推荐运行条件                     |    |
|    | ESD 额定值                    |    |
|    | · · · · - —                |    |
| 7  | 管脚描述                       | 5  |
| 8  | 典型应用                       |    |
|    | 8.1 典型应用原理图                | 6  |
|    | 8.2 PCB 布局指南               |    |
| 9  | 参数测试电路                     | 8  |
| 10 | 0 电气特性                     | 10 |
|    |                            |    |
|    | 10.1 电气特性                  |    |
|    | 10.2 电源电流特性 - 3.3 V 电源     |    |
|    | 10.4 电源电流特性 - 2.5 V 电源     |    |
|    | 10.5 典型性能                  |    |
|    | 10.6 隔离特性                  |    |
|    | 10.7 安规认证                  | 19 |
|    | 10.8 安全限定值                 |    |
|    | 10.9 温度特性                  | 20 |
| 11 | 1 功能描述                     | 21 |
|    | 11.1 功能概述                  | 21 |
|    | 11.2 功能模式                  | 21 |
|    | 11.3 绝缘寿命                  | 22 |
| 12 | 2 封装外形                     | 23 |
|    | 12.1 CMT826X 窄体 SOIC-16 封装 | 23 |
|    | 12.2 CMT826X 宽体 SOIC-16 封装 |    |
| 13 | 3 订购信息                     |    |
|    | 4 编带信息                     |    |
|    | 5 文档变更记录                   |    |
|    |                            |    |
| 16 | 6 联系方式                     | 30 |

# 4 绝对最大额定值

表 1. 绝对最大额定值[1]

| 参数          | 符号               | 条件                                  | 最小   | 最大      | 单位                   |
|-------------|------------------|-------------------------------------|------|---------|----------------------|
| 电源电压[2]     | VDD1, VDD2       |                                     | -0.5 | 6       | V                    |
| 最大输入电压      | INx              | x = A, B, C, D                      | -0.4 | VDD+0.4 | V                    |
| 最大输出电压      | OUTx             | x = A, B, C, D                      | -0.4 | VDD+0.4 | V                    |
| 最大输入/输出脉冲电压 | -                | 脉冲宽度应小于 100 ns, duty cycle 应小于 10%。 | -0.8 | VDD+0.8 | ٧                    |
| 瞬态共模抑制      | CMTI             |                                     |      | ±250    | kV/us                |
| 输出电流        | Io               |                                     | -15  | 15      | mA                   |
| 最大浪涌抑制      | -                |                                     |      | 8       | kV                   |
| 工作温度        | TA               |                                     | -40  | 125     | $^{\circ}\mathbb{C}$ |
| 存储温度        | T <sub>STG</sub> |                                     | -40  | 150     | $^{\circ}\mathbb{C}$ |

#### 备注:

- [1]. 超过"绝对最大额定参数"可能会造成设备永久性损坏。该值为压力额定值,并不意味着在该压力条件下设备功能受影响, 但如果长时间暴露在绝对最大额定值条件下,可能会影响设备可靠性。
- [2]. 除差分 I/O 总线电压外,所有电压值为相对于本地接地端(GND1 或 GND2)且为峰值电压。

# 5 推荐运行条件

表 2. 推荐运行条件

| 参数      | 符号              | 条件            | 最小  | 典型 | 最大   | 単位         |
|---------|-----------------|---------------|-----|----|------|------------|
| 电源电压    | VDD1, VDD2      |               | 2.5 | 5  | 5.5  | V          |
| 高电平输入电压 | VIH             | VDDI: 输入侧 VDD | 2   |    | VDDI | V          |
| 低电平输入电压 | V <sub>IL</sub> | VDDI: 输入侧 VDD | 0   |    | 0.8  | V          |
| 数据率     | DR              |               | 0   |    | 150  | Mbps       |
| 工作温度    | T <sub>A</sub>  |               | -40 | 25 | 125  | $^{\circ}$ |
| 结温      | TJ              |               | -40 |    | 150  | $^{\circ}$ |

# **6** ESD 额定值

表 3. ESD 额定值

| 参数   | 符号               | 条件           | 最大     | 单位 |
|------|------------------|--------------|--------|----|
| 静电放电 | V <sub>ESD</sub> | 人体模型(HBM)    | ±8000  | \/ |
|      |                  | 组件充电模式 (CDM) | ± 2000 | V  |

### 备注:

- [1]. 通过隔离栅施加 IEC ESD 电击,每侧的所有引脚连接在一起,形成一个双端装置。
- [2]. 在空气或油中进行试验,以确定器件本征接触放电能力。



警告! ESD敏感器件.对芯片进行操作的时候应注意做好ESD防范措施,以免芯片的性能下降或者功能丧失。

# 7 管脚描述

CMT8260, CMT8261, CMT8262 and CMT8263 均支持 SOIC-16 窄体和宽体封装,管脚信息如下。

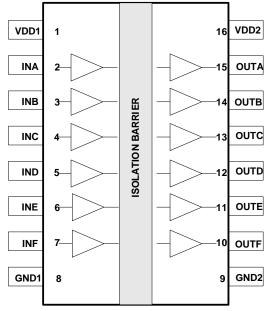



图 1. CMT8260 管脚图

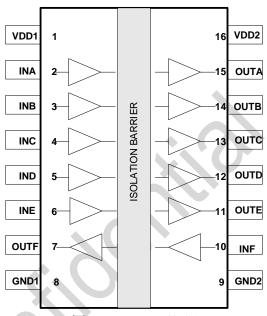
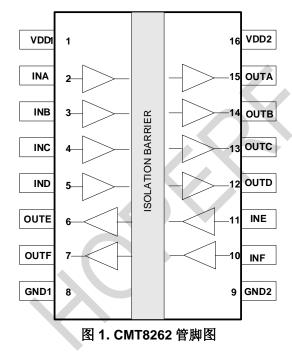




图 2. CMT8261 管脚图



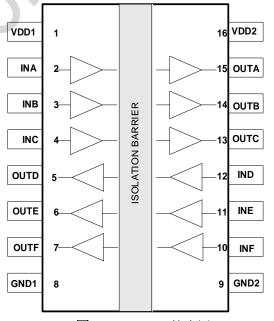



图 4. CMT8263 管脚图

| 禁眦友护 |         |         | 管脚号     |         | 다. 수요 2월 미터  |
|------|---------|---------|---------|---------|--------------|
| 管脚名称 | CMT8260 | CMT8261 | CMT8262 | CMT8263 | 功能说明         |
| VDD1 | 1       | 1       | 1       | 1       | 隔离器第一侧的电源输入。 |
| INA  | 2       | 2       | 2       | 2       | 逻辑输入 A。      |
| INB  | 3       | 3       | 3       | 3       | 逻辑输入B。       |
| INC  | 4       | 4       | 4       | 4       | 逻辑输入C。       |
| IND  | 5       | 5       | 5       | 12      | 逻辑输入D。       |
| INE  | 6       | 6       | 11      | 11      | 逻辑输入E。       |
| INF  | 7       | 10      | 10      | 10      | 逻辑输入F        |
| GND1 | 8       | 8       | 8       | 8       | 隔离器第一侧的接地基准。 |
| GND2 | 9       | 9       | 9       | 9       | 隔离器第二侧的接地基准。 |
| OUTF | 10      | 7       | 7       | 7       | 逻辑输出F。       |
| OUTE | 11      | 11      | 6       | 6       | 逻辑输出E。       |
| OUTD | 12      | 12      | 12      | 5       | 逻辑输出D。       |
| OUTC | 13      | 13      | 13      | 13      | 逻辑输出C。       |
| OUTB | 14      | 14      | 14      | 14      | 逻辑输出B。       |
| OUTA | 15      | 15      | 15      | 15      | 逻辑输出A。       |
| VDD2 | 16      | 16      | 16      | 16      | 隔离器第二侧的电源输入。 |

表 4. CMT8260 / 61 / 62 / 63 管脚描述

# 8 典型应用

## 8.1 典型应用原理图

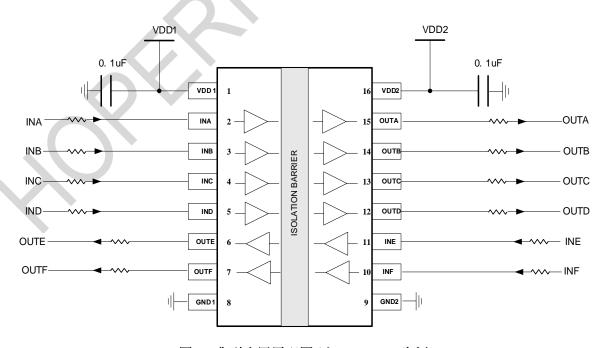



图 2. 典型应用原理图(以 CMT8262 为例)

备注: 用户须注意不能将 VDD 与地接反。

### 8.2 PCB 布局指南

CMT826X VDD1 到 GND1 以及 VDD2 到 GND2 至少需要一个 0.1uF 旁路电容;摆放时电容要尽可能接近芯片的电源引脚 VDD1 与 VDD2。如下图推荐的 PCB 布局所示,需确保 IC 底下的间隙远离走线、焊盘、过孔等。为增强设计稳健性,设计时可以在信号输入/输出串联 50~300ohm 电阻;这些电阻不仅可以增强噪声抑制能力,同时还可以增强系统的可靠性,比如抗闩锁能力。

CMT826X 典型输出阻抗为 50ohm ±40%。当驱动呈现传输线特性时,输出布线需要进行阻抗匹配。

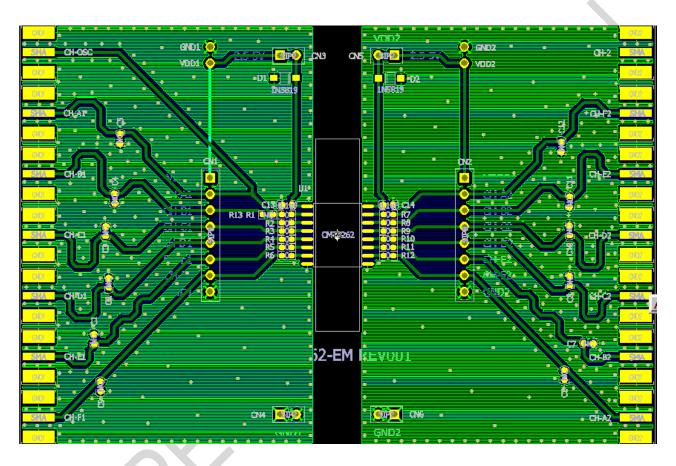



图 3. 推荐 PCB 布局

## 9参数测试电路

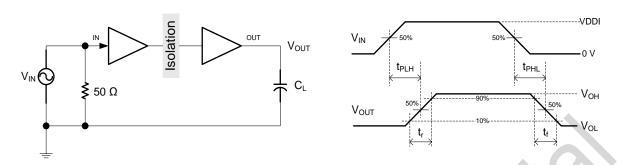



图 4. 开关特性测试电路及波形

### 备注:

- 1. 输入脉冲由波形发生器产生, $V_{IN}$  主要技术指标:  $f_{PULSE} \le 100$  kHz, 50% duty cycle,  $t_r \le 3$  ns,  $t_f \le 3$  ns,  $Z_O = 50$   $\Omega$ 。在输入侧,需要一个 50- $\Omega$  终端匹配电阻,实际应用电路则不需要该电阻。
- 2. 负载电容对测试结果影响较大,合计仪器设备和连接等效电容最好不超过 15 pF。

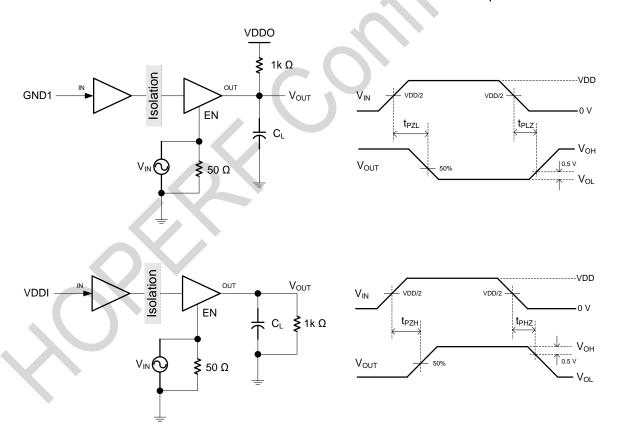



图 5. 使能/关闭传播延时测试电路及波形

#### 备注:

- 1. 输入脉冲由波形发生器产生,主要技术指标:  $f_{PULSE} \le 10$  kHz, 50% duty cycle,  $t_r \le 3$  ns,  $t_f \le 3$  ns,  $Z_O = 50$   $\Omega$ 。
- 2.  $C_L = 15 pF$  ,合计仪器设备和连接等效电容在 $\pm 20\%$ 范围内。

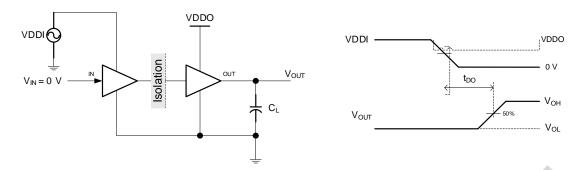



图 6.缺省输出延时测试电路和电压波形

### 备注:

- 1.  $C_L = 15 pF$ ,合计仪器设备和连接等效电容在 $\pm 20\%$ 范围内。
- 2. 电源斜率= 10 mV/ns。

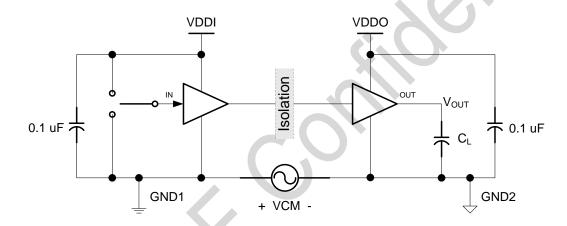



图 7. 瞬态共模抑制能力测试电路

### 备注:

1.  $C_L = 15 pF$ ,合计仪器设备和连接等效电容在 $\pm 20\%$ 范围内。

# 10 电气特性

### 10.1 电气特性

VDD1 =2.5V~5.5V, VDD2= 3.0 V~5.5 V, TA= -40 to 125 °C.

(除非另外说明, 所有典型规格是在 VDD1= 5V, VDD2 = 5V, TA = 25℃的情况下测得的。)

表 5. 电气特性

| 参数        | 符号                 | 条件                    | 最小       | 典型    | 最大  | 单位    |
|-----------|--------------------|-----------------------|----------|-------|-----|-------|
| L由有於(DOD) | $V_{POR}$          | 上电复位门限                |          | 2.3 🦠 |     | V     |
| 上电复位(POR) | V <sub>HYS</sub>   | 上电复位门限迟滞              |          | 0.1   |     | V     |
| \$△       | V <sub>IT</sub>    | 上升沿输入门限               |          | 1.6   |     | V     |
| 输入迟滞<br>  | V <sub>ITHYS</sub> | 输入门限迟滞                |          | 0.4   |     | V     |
| 输入高电平     | V <sub>IH</sub>    |                       | 2        |       |     | V     |
| 输入低电平     | V <sub>IL</sub>    |                       | AX       |       | 0.8 | V     |
| 输出高电平     | V <sub>OH</sub>    | I <sub>OH</sub> =-4mA | VDD- 0.3 |       |     | V     |
| 输出低电平     | V <sub>OL</sub>    | I <sub>OL</sub> = 4mA |          |       | 0.3 | V     |
| 输出阻抗      | Ro                 |                       |          | 50    |     | Ω     |
| 输入上拉/下拉电流 | lpull              |                       |          | 13    |     | uA    |
| POR之后启动时间 | trbs               |                       |          | 10    |     | us    |
| 瞬态共模抑制    | CMTI               |                       | 150      | 250   | 270 | kV/us |

# 10.2 电源电流特性 - 5 V 电源

VDD1 = VDD2 = 5 V,  $T_A$ = -40 to 125  $^{\circ}$ C  $_{\circ}$ 

表 6. 电源电流特性 - 5 V 电源

| 参数                                              | 符号               | 典型值   | 最大值 | 单位 |  |  |  |  |
|-------------------------------------------------|------------------|-------|-----|----|--|--|--|--|
| CMT8260                                         |                  |       |     |    |  |  |  |  |
| 电源电流                                            | I <sub>DD1</sub> | 1.34  |     | mA |  |  |  |  |
| $EN = VDDI, V_{IN} = 0 V$                       | I <sub>DD2</sub> | 3.09  |     | mA |  |  |  |  |
| 电源电流: 关闭器件。                                     | I <sub>DD1</sub> | 10.56 |     | mA |  |  |  |  |
| $EN = VDDI, V_{IN} = VDDI,$                     | I <sub>DD2</sub> | 3.24  |     | mA |  |  |  |  |
| 电源电流: 1 Mbps 方波时钟输入 AC 信号。                      | I <sub>DD1</sub> | 5.88  |     | mA |  |  |  |  |
| 所有通道开关信号为 1 Mbps 方波输入, $C_L = 15 \text{ pF}$ 。  | I <sub>DD2</sub> | 3.28  |     | mA |  |  |  |  |
| 电源电流: 10 Mbps 方波时钟输入 AC 信号。                     | I <sub>DD1</sub> | 5.94  |     | mA |  |  |  |  |
| 所有通道开关信号为 10 Mbps 方波输入, $C_L = 15 \text{ pF}$ 。 | I <sub>DD2</sub> | 4.47  |     | mA |  |  |  |  |
| 电源电流: 100 Mbps 方波时钟输入 AC 信号。                    | I <sub>DD1</sub> | 8.22  |     | mA |  |  |  |  |
| 所有通道开关信号为 100 Mbps 方波输入, $C_L = 15 pF$ 。        | I <sub>DD2</sub> | 28.96 |     | mA |  |  |  |  |
| CMT8261                                         |                  |       |     |    |  |  |  |  |
| 电源电流                                            | I <sub>DD1</sub> | 1.69  |     | mA |  |  |  |  |

| 参数                                              | 符号               | 典型值   | 最大值            | 单位 |
|-------------------------------------------------|------------------|-------|----------------|----|
| V <sub>IN</sub> =0 V                            | I <sub>DD2</sub> | 3.36  |                | mA |
| 电源电流: 关闭器件。                                     | I <sub>DD1</sub> | 9.25  |                | mA |
| $V_{IN} = VDDI$ ,                               | I <sub>DD2</sub> | 4.98  |                | mA |
| 电源电流: 1 Mbps 方波时钟输入 AC 信号。                      | I <sub>DD1</sub> | 5.50  |                | mA |
| 所有通道开关信号为 1 Mbps 方波输入, $C_L = 15 pF$ 。          | I <sub>DD2</sub> | 4.39  |                | mA |
| 电源电流: 10 Mbps 方波时钟输入 AC 信号。                     | I <sub>DD1</sub> | 5.84  |                | mA |
| 所有通道开关信号为 10 Mbps 方波输入, $C_L = 15 pF$ 。         | I <sub>DD2</sub> | 6.42  |                | mA |
| 电源电流: 100 Mbps 方波时钟输入 AC 信号。                    | I <sub>DD1</sub> | 9.68  |                | mA |
| 所有通道开关信号为 100 Mbps 方波输入, $C_L = 15 pF$ 。        | I <sub>DD2</sub> | 27.68 | <b>*</b> _ ( ) | mA |
| CMT8262                                         |                  |       | $\times$       |    |
| 电源电流                                            | I <sub>DD1</sub> | 2.13  |                | mA |
| $V_{IN}=0 V$                                    | I <sub>DD2</sub> | 2.99  |                | mA |
| 电源电流: 关闭器件。                                     | I <sub>DD1</sub> | 8.27  |                | mA |
| $V_{IN} = VDDI$ ,                               | I <sub>DD2</sub> | 6.12  |                | mA |
| 电源电流: 1 Mbps 方波时钟输入 AC 信号。                      | I <sub>DD1</sub> | 5.26  |                | mA |
| 所有通道开关信号为 1 Mbps 方波输入, $C_L = 15 \text{ pF}$ 。  | I <sub>DD2</sub> | 4.74  |                | mA |
| 电源电流: 10 Mbps 方波时钟输入 AC 信号。                     | I <sub>DD1</sub> | 5.97  |                | mA |
| 所有通道开关信号为 10 Mbps 方波输入, $C_L = 15 pF$ 。         | I <sub>DD2</sub> | 6.32  |                | mA |
| 电源电流: 100 Mbps 方波时钟输入 AC 信号。                    | I <sub>DD1</sub> | 13.87 |                | mA |
| 所有通道开关信号为 100 Mbps 方波输入,C <sub>L</sub> = 15 pF。 | I <sub>DD2</sub> | 22.16 |                | mA |
| CMT8263                                         |                  |       |                |    |
| 电源电流                                            | I <sub>DD1</sub> | 2.56  |                | mA |
| $V_{IN}=0 V$                                    | I <sub>DD2</sub> | 2.51  |                | mA |
| 电源电流: 关闭器件。                                     | I <sub>DD1</sub> | 7.31  |                | mA |
| $V_{IN} = VDDI$ ,                               | I <sub>DD2</sub> | 7.13  |                | mA |
| 电源电流: 1 Mbps 方波时钟输入 AC 信号。                      | I <sub>DD1</sub> | 5.04  |                | mA |
| 所有通道开关信号为 1 Mbps 方波输入, $C_L = 15 pF$ 。          | I <sub>DD2</sub> | 4.99  |                | mA |
| 电源电流: 10 Mbps 方波时钟输入 AC 信号。                     | I <sub>DD1</sub> | 6.20  |                | mA |
| 所有通道开关信号为 10 Mbps 方波输入, $C_L = 15 \text{ pF}$ 。 | I <sub>DD2</sub> | 6.29  |                | mA |
| 电源电流: 100 Mbps 方波时钟输入 AC 信号。                    | I <sub>DD1</sub> | 18.30 |                | mA |
| 所有通道开关信号为 100 Mbps 方波输入, $C_L = 15 pF$ 。        | I <sub>DD2</sub> | 19.04 |                | mA |

### 表 6-1. 电源电流特性 - 5 V 电源(CMT826X 共同特性)

| 参数                 | 符号               | 条件               | 最小 | 典型   | 最大 | 单位   |
|--------------------|------------------|------------------|----|------|----|------|
| 数据率                | DR               |                  | 0  | 150  |    | Mbps |
| 最小脉冲宽度             | PW               | 详见图 6, CL = 15pF |    | 5    |    | ns   |
| 上升沿传播延时            | t <sub>PLH</sub> | 详见图 6,CL = 15pF  |    | 7.53 |    | ns   |
| 下降沿传播延时            | t <sub>PHL</sub> | 详见图 6, CL = 15pF |    | 8.43 |    | ns   |
| 脉宽失真 t PHL - t PLH | PWD              | 详见图 6,CL = 15pF  |    | 0.9  |    | ns   |
| 上升时间               | tr               | 详见图 6,CL = 15pF  |    | 0.8  |    | ns   |

| 参数      | 符号                    | 条件              | 最小 | 典型   | 最大  | 单位 |
|---------|-----------------------|-----------------|----|------|-----|----|
| 下降时间    | tf                    | 详见图 6,CL = 15pF |    | 0.85 |     | ns |
| 眼图抖动峰值  | t <sub>JIT</sub> (PK) |                 |    | 400  |     | ps |
| 通道间延时偏差 | t <sub>SK</sub> (c2c) |                 |    | 0.3  | 2.5 | ns |
| 芯片间延时偏差 | t <sub>SK</sub> (p2p) |                 |    |      | 5   | ns |

## 10.3 电源电流特性 - 3.3 V 电源

VDD1 = VDD2 = 3.3 V,  $T_A$ = -40 to 125  $^{\circ}\mathrm{C}$   $_{\circ}$ 

表 7. 电源电流特性 - 3.3 V 电源

| 参数                                              | 符号               | 典型值   | 最大值 | 単位 |
|-------------------------------------------------|------------------|-------|-----|----|
| CMT8260                                         |                  | CA    |     |    |
| 电源电流                                            | I <sub>DD1</sub> | 1.34  |     | mA |
| $V_{IN}=0 V$                                    | I <sub>DD2</sub> | 3.08  |     | mA |
| 电源电流:。                                          | I <sub>DD1</sub> | 10.46 |     | mA |
| $V_{IN} = VDDI$ ,                               | I <sub>DD2</sub> | 3.23  |     | mA |
| 电源电流: 1 Mbps 方波时钟输入 AC 信号。                      | I <sub>DD1</sub> | 5.89  |     | mA |
| 所有通道开关信号为 1 Mbps 方波输入, $C_L = 15 \text{ pF}$ 。  | I <sub>DD2</sub> | 3.33  |     | mA |
| 电源电流: 10 Mbps 方波时钟输入 AC 信号。                     | I <sub>DD1</sub> | 5.95  |     | mA |
| 所有通道开关信号为 10 Mbps 方波输入,C <sub>L</sub> = 15 pF。  | I <sub>DD2</sub> | 4.88  |     | mA |
| 电源电流: 100 Mbps 方波时钟输入 AC 信号。                    | I <sub>DD1</sub> | 7.10  |     | mA |
| 所有通道开关信号为 100 Mbps 方波输入, $C_L = 15 pF$ 。        | I <sub>DD2</sub> | 21.12 |     | mA |
| CMT8261                                         |                  |       |     |    |
| 电源电流                                            | I <sub>DD1</sub> | 1.73  |     | mA |
| $V_{IN}=0$ V                                    | I <sub>DD2</sub> | 3.28  |     | mA |
| 电源电流:                                           | I <sub>DD1</sub> | 9.43  |     | mA |
| V <sub>IN</sub> =VDDI,                          | I <sub>DD2</sub> | 4.89  |     | mA |
| 电源电流: 1 Mbps 方波时钟输入 AC 信号。                      | I <sub>DD1</sub> | 5.59  |     | mA |
| 所有通道开关信号为 1 Mbps 方波输入, $C_L = 15 \text{ pF}$ 。  | I <sub>DD2</sub> | 4.23  |     | mA |
| 电源电流: 10 Mbps 方波时钟输入 AC 信号。                     | I <sub>DD1</sub> | 5.78  |     | mA |
| 所有通道开关信号为 10 Mbps 方波输入, $C_L = 15 pF$ 。         | I <sub>DD2</sub> | 5.58  |     | mA |
| 电源电流: 100 Mbps 方波时钟输入 AC 信号。                    | I <sub>DD1</sub> | 9.61  |     | mA |
| 所有通道开关信号为 100 Mbps 方波输入,C <sub>L</sub> = 15 pF。 | I <sub>DD2</sub> | 19.86 |     | mA |
| CMT8262                                         |                  |       |     |    |
| 电源电流                                            | I <sub>DD1</sub> | 2.11  |     | mA |
| $V_{IN} = 0 V$                                  | I <sub>DD2</sub> | 2.97  |     | mA |
| 电源电流:                                           | I <sub>DD1</sub> | 8.22  |     | mA |
| $V_{IN} = VDDI$ ,                               | I <sub>DD2</sub> | 6.09  |     | mA |
| 电源电流: 1 Mbps 方波时钟输入 AC 信号。                      | I <sub>DD1</sub> | 5.20  |     | mA |

| 参数                                               | 符号               | 典型值   | 最大值      | 单位 |
|--------------------------------------------------|------------------|-------|----------|----|
| 所有通道开关信号为 1 Mbps 方波输入, $C_L = 15  pF$ 。          | I <sub>DD2</sub> | 4.66  |          | mA |
| 电源电流: 10 Mbps 方波时钟输入 AC 信号。                      | I <sub>DD1</sub> | 5.63  |          | mA |
| 所有通道开关信号为 10 Mbps 方波输入,C <sub>L</sub> = 15 pF。   | I <sub>DD2</sub> | 5.71  |          | mA |
| 电源电流: 100 Mbps 方波时钟输入 AC 信号。                     | I <sub>DD1</sub> | 11.92 |          | mA |
| 所有通道开关信号为 100 Mbps 方波输入, $C_L = 15 \text{ pF}$ 。 | I <sub>DD2</sub> | 16.61 |          | mA |
| CMT8263                                          |                  |       |          |    |
| 电源电流                                             | I <sub>DD1</sub> | 2.54  |          | mA |
| $V_{IN} = 0 V$                                   | I <sub>DD2</sub> | 2.50  |          | mA |
| 电源电流:                                            | I <sub>DD1</sub> | 7.27  | <b>\</b> | mA |
| $V_{IN} = VDDI$ ,                                | I <sub>DD2</sub> | 7.10  |          | mA |
| 电源电流: 1 Mbps 方波时钟输入 AC 信号。                       | I <sub>DD1</sub> | 4.97  |          | mA |
| 所有通道开关信号为 1 Mbps 方波输入, $C_L = 15 pF$ 。           | I <sub>DD2</sub> | 4.91  |          | mA |
| 电源电流: 10 Mbps 方波时钟输入 AC 信号。                      | I <sub>DD1</sub> | 5.70  |          | mA |
| 所有通道开关信号为 10 Mbps 方波输入, C <sub>L</sub> = 15 pF。  | I <sub>DD2</sub> | 5.78  |          | mA |
| 电源电流: 100 Mbps 方波时钟输入 AC 信号。                     | I <sub>DD1</sub> | 14.70 |          | mA |
| 所有通道开关信号为 100 Mbps 方波输入, $C_L = 15 pF$ 。         | I <sub>DD2</sub> | 14.74 |          | mA |

表 7. 电源电流特性 - 3.3V 电源(CMT826X 共同特性)

| 参数                 | 符号                    | 条件              | 最小 | 典型  | 最大  | 单位   |
|--------------------|-----------------------|-----------------|----|-----|-----|------|
| 数据率                | DR                    |                 | 0  | 150 |     | Mbps |
| 最小脉冲宽度             | PW                    | 详见图 6,CL = 15pF |    | 5   |     | ns   |
| 上升沿传播延时            | t <sub>PLH</sub>      | 详见图 6,CL = 15pF |    | 8   |     | ns   |
| 下降沿传播延时            | t <sub>PHL</sub>      | 详见图 6,CL = 15pF |    | 8.7 |     | ns   |
| 脉宽失真 t PHL - t PLH | PWD                   | 详见图 6,CL = 15pF |    | 0.7 |     | ns   |
| 上升时间               | tr                    | 详见图 6,CL = 15pF |    | 1   |     | ns   |
| 下降时间               | tf                    | 详见图 6,CL = 15pF |    | 0.9 |     | ns   |
| 眼图抖动峰值             | t <sub>JIT</sub> (PK) |                 |    | 400 |     | ps   |
| 通道间延时偏差            | t <sub>SK</sub> (c2c) |                 |    | 0.5 | 2.5 | ns   |
| 芯片间延时偏差            | t <sub>SK</sub> (p2p) |                 |    |     | 5   | ns   |

# 10.4 电源电流特性 - 2.5 V 电源

VDD1 = VDD2 = 2.5 V,  $T_A$ = -40 to 125  $^{\circ}$ C  $_{\circ}$ 

表 8. 电源电流特性 - 2.5 V 电源

| 参数                          | 符号               | 典型值   | 最大值 | 单位 |
|-----------------------------|------------------|-------|-----|----|
| CMT8260                     |                  |       |     |    |
| 电源电流                        | I <sub>DD1</sub> | 1.33  |     | mA |
| $EN = VDDI, V_{IN} = 0 V$   | I <sub>DD2</sub> | 3.16  |     | mA |
| 电源电流:                       | I <sub>DD1</sub> | 10.46 |     | mA |
| $EN = VDDI, V_{IN} = VDDI,$ | I <sub>DD2</sub> | 3.30  |     | mA |

| 参数                                               | 符号               | 典型值   | 最大值      | 单位 |
|--------------------------------------------------|------------------|-------|----------|----|
| 电源电流: 1 Mbps 方波时钟输入 AC 信号。                       | I <sub>DD1</sub> | 5.87  |          | mA |
| 所有通道开关信号为 1 Mbps 方波输入, $C_L = 15 \text{ pF}$ 。   | I <sub>DD2</sub> | 3.37  |          | mA |
| 电源电流: 10 Mbps 方波时钟输入 AC 信号。                      | I <sub>DD1</sub> | 6.00  |          | mA |
| 所有通道开关信号为 10 Mbps 方波输入, $C_L = 15 pF$ 。          | I <sub>DD2</sub> | 5.80  |          | mA |
| 电源电流: 100 Mbps 方波时钟输入 AC 信号。                     | I <sub>DD1</sub> | 5.44  |          | mA |
| 所有通道开关信号为 100 Mbps 方波输入, $C_L = 15 \text{ pF}$ 。 | I <sub>DD2</sub> | 16.83 |          | mA |
| CMT8261                                          | •                |       |          |    |
| 电源电流                                             | I <sub>DD1</sub> | 1.67  |          | mA |
| $V_{IN} = 0 V$                                   | I <sub>DD2</sub> | 3.34  | <b>\</b> | mA |
| 电源电流:                                            | I <sub>DD1</sub> | 9.16  | X        | mA |
| $V_{IN} = VDDI$ ,                                | I <sub>DD2</sub> | 4.95  |          | mA |
| 电源电流: 1 Mbps 方波时钟输入 AC 信号。                       | I <sub>DD1</sub> | 5.42  |          | mA |
| 所有通道开关信号为 1 Mbps 方波输入, $C_L = 15 \text{ pF}$ 。   | I <sub>DD2</sub> | 4.26  |          | mA |
| 电源电流: 10 Mbps 方波时钟输入 AC 信号。                      | I <sub>DD1</sub> | 5.55  |          | mA |
| 所有通道开关信号为 10 Mbps 方波输入,C <sub>L</sub> = 15 pF。   | I <sub>DD2</sub> | 5.29  |          | mA |
| 电源电流: 100 Mbps 方波时钟输入 AC 信号。                     | I <sub>DD1</sub> | 7.30  |          | mA |
| 所有通道开关信号为 100 Mbps 方波输入,C <sub>L</sub> = 15 pF。  | I <sub>DD2</sub> | 16.00 |          | mA |
| CMT8262                                          |                  |       | 1        |    |
| 电源电流                                             | I <sub>DD1</sub> | 2.16  |          | mA |
| V <sub>IN</sub> =0 V                             | I <sub>DD2</sub> | 2.95  |          | mA |
| 电源电流:                                            | I <sub>DD1</sub> | 8.33  |          | mA |
| V <sub>IN</sub> =VDDI,                           | I <sub>DD2</sub> | 6.04  |          | mA |
| 电源电流: 1 Mbps 方波时钟输入 AC 信号。                       | I <sub>DD1</sub> | 5.26  |          | mA |
| 所有通道开关信号为 1 Mbps 方波输入, $C_L = 15 \text{ pF}$ 。   | I <sub>DD2</sub> | 4.59  |          | mA |
| 电源电流: 10 Mbps 方波时钟输入 AC 信号。                      | I <sub>DD1</sub> | 5.56  |          | mA |
| 所有通道开关信号为 10 Mbps 方波输入,CL = 15 pF。               | I <sub>DD2</sub> | 5.40  |          | mA |
| 电源电流: 100 Mbps 方波时钟输入 AC 信号。                     | I <sub>DD1</sub> | 9.37  |          | mA |
| 所有通道开关信号为 100 Mbps 方波输入,C <sub>L</sub> = 15 pF。  | I <sub>DD2</sub> | 13.51 |          | mA |
| CMT8263                                          |                  |       | 1        |    |
| 电源电流                                             | I <sub>DD1</sub> | 2.54  |          | mA |
| V <sub>IN</sub> =0 V                             | I <sub>DD2</sub> | 2.49  |          | mA |
| 电源电流:                                            | I <sub>DD1</sub> | 7.24  |          | mA |
| V <sub>IN</sub> =VDDI,                           | I <sub>DD2</sub> | 7.08  |          | mA |
| 电源电流: 1 Mbps 方波时钟输入 AC 信号。                       | I <sub>DD1</sub> | 4.94  |          | mA |
| 所有通道开关信号为 1 Mbps 方波输入,C <sub>L</sub> = 15 pF。    | I <sub>DD2</sub> | 4.88  |          | mA |
|                                                  | I <sub>DD1</sub> | 5.47  |          | mA |
| 所有通道开关信号为 10 Mbps 方波输入,C <sub>L</sub> = 15 pF。   | I <sub>DD2</sub> | 5.53  |          | mA |
|                                                  |                  | I     | 1        |    |
| 电源电流: 100 Mbps 方波时钟输入 AC 信号。                     | I <sub>DD1</sub> | 11.47 |          | mA |

表 8. 电源电流特性 - 2.5V 电源(CMT826X 共同特性)

| 参数                 | 符号                    | 条件               | 最小 | 典型   | 最大       | 単位   |
|--------------------|-----------------------|------------------|----|------|----------|------|
| 数据率                | DR                    |                  | 0  | 150  |          | Mbps |
| 最小脉冲宽度             | PW                    | 详见图 6, CL = 15pF |    | 5    |          | ns   |
| 上升沿传播延时            | t <sub>PLH</sub>      | 详见图 6,CL = 15pF  |    | 8.63 |          | ns   |
| 下降沿传播延时            | t <sub>PHL</sub>      | 详见图 6,CL = 15pF  |    | 9.11 |          | ns   |
| 脉宽失真 t PHL - t PLH | PWD                   | 详见图 6,CL = 15pF  |    | 0.48 |          | ns   |
| 上升时间               | tr                    | 详见图 6,CL = 15pF  |    | 1.04 |          | ns   |
| 下降时间               | tf                    | 详见图 6,CL = 15pF  |    | 1.23 | <b>\</b> | ns   |
| 眼图抖动峰值             | t <sub>JIT</sub> (PK) |                  |    | 400  | X        | ps   |
| 通道间延时偏差            | t <sub>SK</sub> (c2c) |                  |    | 0.7  | 2.5      | ns   |
| 芯片间延时偏差            | t <sub>SK</sub> (p2p) |                  |    | 0    | 5        | ns   |

### 10.5 典型性能

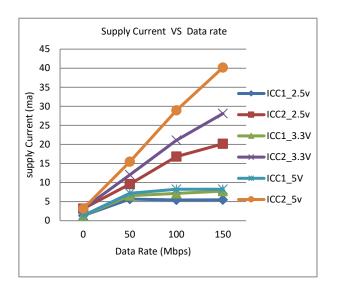



图 9-1.电源电流 vs.数据率 (15-pF 负载) T<sub>A</sub>=25℃ C<sub>L</sub>=15pF

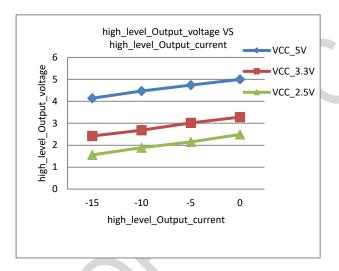



图 9-3. 高电平输出电压 vs. 高电平输出电流 (T<sub>A</sub>=25℃)

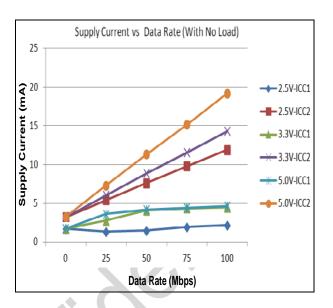



图 9-2. 电源电流 vs.数据率 (无负载) T<sub>A</sub>=25℃ C<sub>L</sub>=No Load

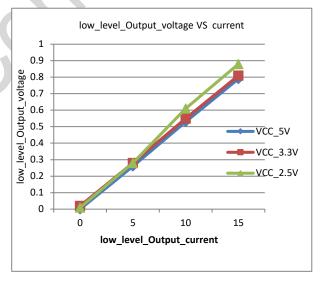



图 9-4. 低电平输出电压 vs. 低电平输出电流(T<sub>A</sub>=25℃)

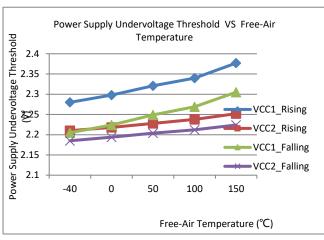



图 9-5. 电源欠压阈值 vs. 大气温度

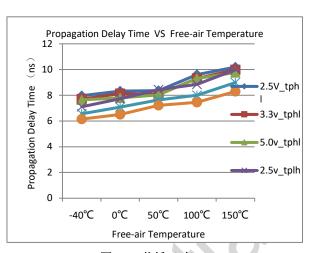



图 9-6. 传播延时 vs. 大气温度

## 10.6 隔离特性

表 9. 隔离特性

| 参数                           | 符号 测试条件 NI        |                                                                                                                                                                 | ſ         | 単位         |                  |
|------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------|------------------|
| <b>少</b> 知                   |                   |                                                                                                                                                                 | NBSOIC-16 | WB SOIC-16 | 平位               |
| 外部间隙[1]                      | CLR               | 输入端至输出端隔空最短距离                                                                                                                                                   | 4.0       | 8.0        | mm               |
| 外部爬电距离[1]                    | CRP               | 输入端至输出端沿壳体最短距离                                                                                                                                                  | 4.0       | 8.0        | mm               |
| 隔离距离                         | DTI               | 最小内部间隙                                                                                                                                                          | 32        | 32         | um               |
| 相对漏电指数                       | CTI               | DIN EN 60112 (VDE 0303-11);IEC 60112                                                                                                                            | > 400     | >600       | V                |
| 材料组                          | (-)               |                                                                                                                                                                 | 1         | 1          | -                |
|                              | V                 | 额定电源电压≤ 300 V <sub>RMS</sub>                                                                                                                                    | ı         | I          | -                |
| 过电压等级<br>(按 IEC 60664-1 标准)  | -                 | 额定电源电压≤ 600 V <sub>RMS</sub>                                                                                                                                    | I-IV      | I-IV       | -                |
| (1X IZO COCCI I MINIE)       |                   | 额定电源电压≤ 1000 V <sub>RMS</sub>                                                                                                                                   | 1-111     | 1-111      | -                |
| DIN VDE V 0884-11:2017-01[2] |                   |                                                                                                                                                                 |           |            |                  |
| 最大工作绝缘电压(峰值)                 | $V_{IORM}$        |                                                                                                                                                                 | 565       | 2121       | $V_{pk}$         |
| 最大工作绝缘电压 (有效值)               | V <sub>IOWM</sub> | 交流电压 (正弦波); 介质层时变击穿(TDDB)测试                                                                                                                                     | 400       | 1500       | $V_{\text{RMS}}$ |
| (1776)                       | 10000             | 直流电压                                                                                                                                                            |           | 2121       | $V_{DC}$         |
| 最大瞬态耐压                       | VIOTM             | VTEST = VIOTM                                                                                                                                                   | 5300      | 8000       | $V_{pk}$         |
| 最大浪涌隔离耐压[3]                  | V <sub>IOSM</sub> | 按IEC60065 方法测试, 1.2/50 us 波形, V <sub>TEST</sub> = 1.6 x V <sub>IOSM</sub> (认证)                                                                                  | 5300      | 8000       | $V_{pk}$         |
| 表观电荷[4]                      | q <sub>pd</sub>   | 方法 a: 在 I/O 安全测试分组 2/3 之后, V <sub>ini</sub> = V <sub>IOTM</sub> , t <sub>ini</sub> = 60 s; V <sub>pd(m)</sub> = 1.2 x V <sub>IORM</sub> , t <sub>m</sub> = 10 s |           | <5         | рС               |

| 参数             | 符号 测试条件          |                                                                                                                                                                                | 有         | 単位            |           |
|----------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------|-----------|
| <b>少</b> 数     | 42.2             | 侧风余竹                                                                                                                                                                           | NBSOIC-16 | WB SOIC-16    |           |
|                |                  | 方法 a: 在环境测试分组 1 之后,<br>V <sub>ini</sub> = V <sub>IOTM</sub> , t <sub>ini</sub> = 60 s;<br>V <sub>pd(m)</sub> = 1.6 × V <sub>IORM</sub> , t <sub>m</sub> = 10 s                 |           | <5            |           |
|                |                  | 方法 b1: 例行测试(100%量产) 和预处理 (类型<br>测试)<br>V <sub>ini</sub> = V <sub>IOTM</sub> , t <sub>ini</sub> = 1 s;<br>V <sub>pd(m)</sub> = 1.875 × V <sub>IORM</sub> , t <sub>m</sub> = 1 s |           | <b>&lt;</b> 5 |           |
| 隔离电容,输入到输出 [5] | C <sub>IO</sub>  | V <sub>IO</sub> = 0.4 x sin (2πft), f = 1 MHz                                                                                                                                  | 1.2       | 1.2           | pF        |
| 隔离电阻,输入到输出[5]  | R <sub>IO</sub>  | V <sub>IO</sub> = 500 V                                                                                                                                                        | >1010     | >1010         | Ω         |
| UL 1577        |                  |                                                                                                                                                                                |           |               |           |
| 隔离耐压           | V <sub>ISO</sub> | V <sub>TEST</sub> = V <sub>ISO</sub> , t = 60 s (认证);<br>V <sub>TEST</sub> = 1.2 × V <sub>ISO</sub> , t = 1 s (100%量产)                                                         | 3750      | 5700          | $V_{RMS}$ |

#### 备注:

- [1]. 应根据应用的设备隔离标准采纳相应的爬电距离和间隙需求标准。PCB 设计中应注意保持爬电距离和间隙距离,确保板上隔离器的安装垫不会导致相应距离减少。某些情况下,PCB 板上的爬电距离和间隙是相等的。在 PCB 板上加凹槽和/肋条设计有助于改善该指标。
- [2]. 该隔离器仅适用于安全额定值范围内的安全电气绝缘。应通过适当的保护电路确保符合安全额定值。
- [3]. 在空气或油中进行测试,以确定隔离栅的固有浪涌抗扰度。
- [4]. 表观电荷是由局部放电(pd)引起的放电。
- [5]. 隔离栅两侧的所有管脚连接在一起,形成一个双端装置。

Rev 0.4 | 18/30

## 10.7 安规认证

表 10.安规认证

| VDE                                         | UL                                       |                                                         | CQC                        | TUV                                                                        |
|---------------------------------------------|------------------------------------------|---------------------------------------------------------|----------------------------|----------------------------------------------------------------------------|
| DIN VDE<br>V0884-11:2017-01 认<br>证<br>(申请中) | UL 1577 Component<br>Recognition Program | Approved under CSA<br>Component<br>Acceptance Notice 5A | GB 4943.1-2011 认证          | EN 61010-1:2010<br>(3rd Ed) and EN<br>60950-1:2006/A2:<br>2013 认证<br>(申请中) |
| 证书编号:申请中                                    | 证书编号:<br>UL-US-2439077-1                 |                                                         | 证书编号:<br>CQC11-471543-2022 | 证书编号:申请中                                                                   |

## 10.8 安全限定值

设置安全限定值的目的在于: 当输入或输出电路故障时可以尽量减少对隔离栅的可能损坏。I/O 故障可能导致对地或电源的低电阻; 因而,在不限制电流的情况下,过多的功率损耗会导致模具过热并造成隔离栅损坏,从而可能导致系统二次故障。

表 11. 安全限值

| 参数                     | 符号 测试条件 |                                                                                                                                      | 徝         | 単位        |            |
|------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|------------|
| 多数                     |         |                                                                                                                                      | NBSOIC-16 | WBSOIC-16 | 平位         |
| 2.444) 44.11 1.77.1.79 |         | R <sub>0JA</sub> = 140 °C/W, V <sub>I</sub> = 5.5 V,<br>T <sub>J</sub> = 125 °C, T <sub>A</sub> = 25 °C                              | 160       |           | mA         |
| 安全输入、输出、电源电流           | ls      | $R_{\theta JA} = 84 ^{\circ}\text{C/W},  V_{I} = 5.5 ^{\circ}\text{V}, \ T_{J} = 125 ^{\circ}\text{C},  T_{A} = 25 ^{\circ}\text{C}$ |           | 237       | mA         |
| 25℃下功率总损耗              | Ps      | <u></u>                                                                                                                              |           | 1499      | mW         |
| 外壳温度                   | Ts      |                                                                                                                                      | 125       | 125       | $^{\circ}$ |

Rev 0.4 | 19/30 www.hoperf.cn

# 10.9 温度特性

表 12. 温度特性

| <b>会</b> 粉 | 符号                    | 值          | 単位         |                |
|------------|-----------------------|------------|------------|----------------|
| <b>参数</b>  | 加五                    | NB SOIC-16 | WB SOIC-16 | <del>甲</del> 亚 |
| 结至环境热阻     | θЈА                   | 78.9       | 78.9       | °C/W           |
| 结至外壳(顶部)热阻 | θ <sub>JC</sub> (top) | 41.1       | 41.6       | °C/W           |
| 结至板热阻      | $\theta_{JB}$         | 49.5       | 43.6       | °C/W           |

## 11 功能描述

### 11.1 功能概述

CMT826X 为高性能六通道数字隔离器,其隔离额定值可达 5700 V<sub>RMS</sub>。该器件支持 00K 调制方案,可以跨二氧化硅隔离栅进行数字数据传输。 发射器通过隔离栅发送高频载波表示一种数字状态,而不发送信号则表示另一种数字状态。 接收器在将信号进行预处理后进行信号解调,并通过缓冲级产生输出。 如果 ENx 引脚为低电平,则输出变为高阻抗。 CMT826X 还采用了先进的电路技术,以最大限度地提高 CMTI 性能并最大限度地减少由于高频载波和 IO 缓冲器切换引起的辐射。以下为 00K 调制方案工作原理示意图。

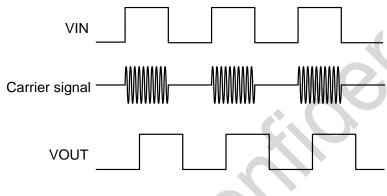



图 8.OOK 调制机制

### 11.2 功能模式

下表为 CMT826X 功能模式列表。

输出使能 输入 V<sub>DD1</sub> V<sub>DD2</sub> 描述 输出(OUTx)  $(INx)^{[2]}$ (ENx) H 或开路 Н Η 正常工作状态:通道的输出跟随对应的输入状态。 L L H或开路 PU PU 开路 H或开路 缺省 缺省模式: 当 INx 开路时,输出为缺省逻辑状态。 PU Х 7 Χ L 输出使能为低值时,输出为高阻态。 缺省模式: 当 VDDI 未上电时,通道输出采用基于所选默认选 项的逻辑状态; 当 VDD1 从未上电转换为上电时,通道输出跟随输入的逻辑状 PD PU H或开路 缺省 Χ 当 VDD1 从上电转换为未上电时,通道输出采用选定的默认状 当 VDD2 未上电时,通道输出不确定<sup>[3]</sup>。当 VDD2 从未上电 PD 不确定 Χ Χ Χ 转换为通电时,通道输出跟随输入的逻辑状态。

表 13. 功能模式表[1]

| V <sub>DD1</sub> | V <sub>DD2</sub> | 输入<br>(INx) <sup>[2]</sup> | 输出使能<br>(ENx) | 输出(OUTx) | 描述 |
|------------------|------------------|----------------------------|---------------|----------|----|
| 备注:              |                  |                            |               |          |    |

- [1]. VDDI =输入侧VDD; VDD2 = 输出侧 VDD; PU = 上电 (VDD ≥ 2.5 V); PD = 未上电 (VDD ≤ 1.7 V); X = 不相关; H = 高电平; L =低电平; Z = 高阻态。
- [2]. 强驱动输入信号可通过内部保护二极管为浮动VDD提供弱供电,并导致输出不确定。
- [3]. 当 1.7 V < VDD1, VDD2 < 2.5V时,输出为不确定状态。

### 11.3 绝缘寿命

绝缘寿命预测数据采用行业标准的介质层时变击穿(TDDB)测试方法收集。 在此测试中,隔离栅每一侧的所有引脚都连接在一起,形成一个双端设备,并在两侧之间施加高电压; TDDB 测试设置请参见下图。 绝缘击穿数据是在过温情况下施加不同高压并以 60 Hz 频率切换时收集的。对于加强绝缘,VDE 标准要求使用故障率低于百万分之一(ppm)的 TDDB 投影线。 尽管在指定的工作隔离电压下预期的最短绝缘寿命为 20 年,但 VDE 加强认证要求额外的工作电压安全余量为 20%,寿命余量为 87.5%,这意味着在工作电压比规定值高 20%情况下要求达到最低 37.5 年的绝缘寿命。

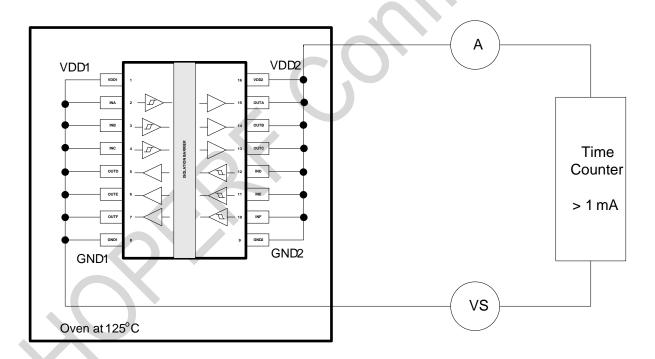



图 9.绝缘寿命测试方式

# 12 封装外形

CMT826X SOIC16 封装信息如下图所示。

## 12.1 CMT826X 窄体 SOIC-16 封装

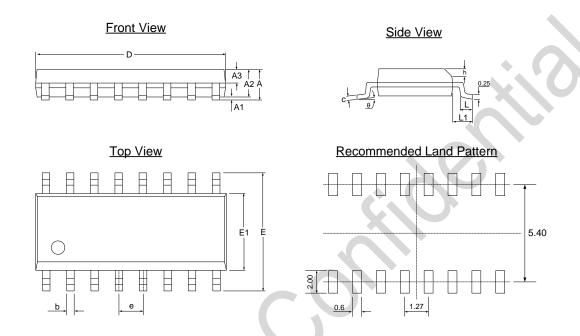



图 10. SOIC-16 窄体封装

表 14. SOIC-16 窄体封装尺寸

|    | 尺寸 <b>(毫米 mm)</b> |      |        |  |  |  |  |
|----|-------------------|------|--------|--|--|--|--|
| 符号 | 日子社               |      | 目 1. 件 |  |  |  |  |
|    | 最小值               | 典型值  | 最大值    |  |  |  |  |
| A  | -                 | -    | 1.75   |  |  |  |  |
| A1 | 0.10              | -    | 0.25   |  |  |  |  |
| b  | 0.36              | -    | 0.49   |  |  |  |  |
| С  | 0.19              | -    | 0.25   |  |  |  |  |
| D  | 9.80              | 9.90 | 10.0   |  |  |  |  |
| E  | 5.80              | -    | 6.20   |  |  |  |  |
| E1 | 3.80              | 3.90 | 4.00   |  |  |  |  |
| е  |                   | 1.27 |        |  |  |  |  |
| L  | 0.40              | -    | 1.00   |  |  |  |  |
| L1 |                   | 1.05 |        |  |  |  |  |
| θ  | 0                 | -    | 8°     |  |  |  |  |

## 12.2 CMT826X 宽体 SOIC-16 封装

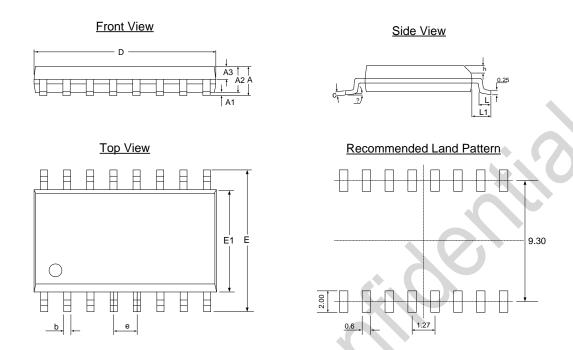
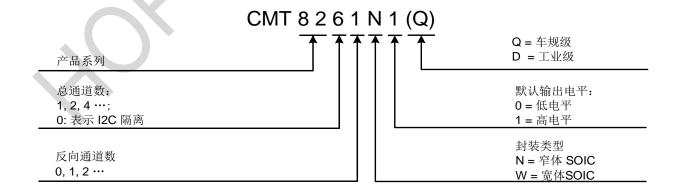



图 11. SOIC-16 宽体封装 表 15. SOIC-16 宽体封装尺寸


| Art II | 尺寸 (毫米 mm) |       |       |  |  |  |
|--------|------------|-------|-------|--|--|--|
| 符号     | 最小值        | 典型值   | 最大值   |  |  |  |
| А      |            | -     | 2.65  |  |  |  |
| A1     | 0.10       | 0.20  | 0.30  |  |  |  |
| A2     | 2.25       | 2.30  | 2.35  |  |  |  |
| A3     | 1.00       | 1.05  | 1.10  |  |  |  |
| b      | 0.35       | 0.37  | 0.43  |  |  |  |
| С      | 0.15       | 0.20  | 0.30  |  |  |  |
| D      | 10.30      | 10.40 | 10.50 |  |  |  |
| E      | 10.10      | 10.30 | 10.50 |  |  |  |
| E1     | 7.40       | 7.50  | 7.60  |  |  |  |
| е      | 1.14       | 1.27  | 1.40  |  |  |  |
| L      | 0.65       | 0.70  | 0.85  |  |  |  |
| L1     |            | 1.40  |       |  |  |  |
| θ      | 0          | -     | 8°    |  |  |  |

# 13 订购信息

表 16. 产品订购列表

| 产品型号      | 起订量  | 隔离耐压<br>(kV) | 总通道数 | 正向通道数 | 反向通<br>道数 | 最大速率<br>(Mbps) | 默认输出<br>电平 | 是否<br>车规 | 封装         | MSL |
|-----------|------|--------------|------|-------|-----------|----------------|------------|----------|------------|-----|
| CMT8260W0 | 1000 | 5            | 6    | 6     | 0         | 150            | 低          | 否        | WB SOIC-16 | 3   |
| CMT8260W1 | 1000 | 5            | 6    | 6     | 0         | 150            | 高          | 否        | WB SOIC-16 | 3   |
| CMT8261W0 | 1000 | 5            | 6    | 5     | 1         | 150            | 低          | 否        | WB SOIC-16 | 3   |
| CMT8261W1 | 1000 | 5            | 6    | 5     | 1         | 150            | 高          | 否        | WB SOIC-16 | 3   |
| CMT8262W0 | 1000 | 5            | 6    | 4     | 2         | 150            | 低          | 否        | WB SOIC-16 | 3   |
| CMT8262W1 | 1000 | 5            | 6    | 4     | 2         | 150            | 画          | 否        | WB SOIC-16 | 3   |
| CMT8263W0 | 1000 | 5            | 6    | 3     | 3         | 150            | 低          | 否        | WB SOIC-16 | 3   |
| CMT8263W1 | 1000 | 5            | 6    | 3     | 3         | 150            | 高          | 否        | WB SOIC-16 | 3   |
| CMT8260N0 | 3000 | 3.75         | 6    | 6     | 0         | 150            | 低          | 否        | NB SOIC-16 | 3   |
| CMT8260N1 | 3000 | 3.75         | 6    | 6     | 0         | 150            | 高          | 否        | NB SOIC-16 | 3   |
| CMT8261N0 | 3000 | 3.75         | 6    | 5     | 1         | 150            | 低          | 否        | NB SOIC-16 | 3   |
| CMT8261N1 | 3000 | 3.75         | 6    | 5     | 1         | 150            | 画          | 否        | NB SOIC-16 | 3   |
| CMT8262N0 | 3000 | 3.75         | 6    | 4     | 2         | 150            | 低          | 否        | NB SOIC-16 | 3   |
| CMT8262N1 | 3000 | 3.75         | 6    | 4     | 2         | 150            | 高          | 否        | NB SOIC-16 | 3   |
| CMT8263N0 | 3000 | 3.75         | 6    | 3     | 3         | 150            | 低          | 否        | NB SOIC-16 | 3   |
| CMT8263N1 | 3000 | 3.75         | 6    | 3     | 3         | 150            | 高          | 否        | NB SOIC-16 | 3   |

### 产品命名规则:



如需了解更多产品及产品线信息,请访问 <u>www.hoperf.com</u>。

有关采购或价格需求,请联系 <u>sales@hoperf.com</u>或者当地销售代表。

# 14 编带信息

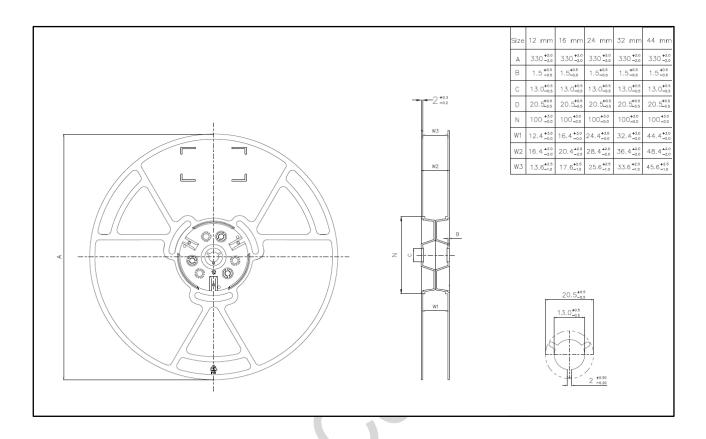



图 15. CMT826X WB SOIC-16 卷带信息

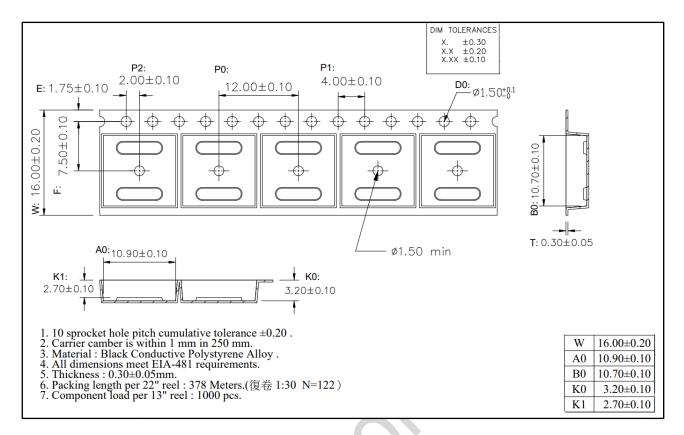



图 16. CMT826X WB SOIC-16 编带信息

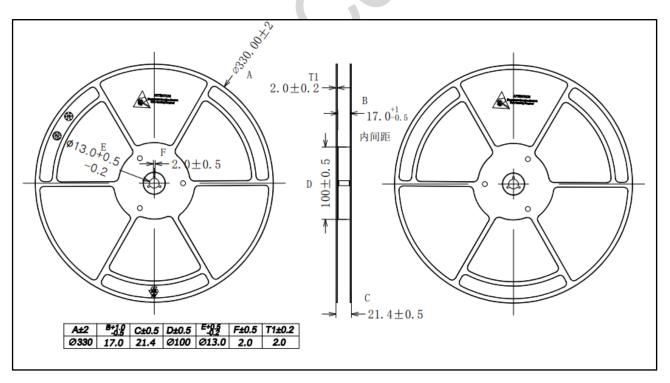



图 17. CMT826X NB SOIC-16 卷带信息

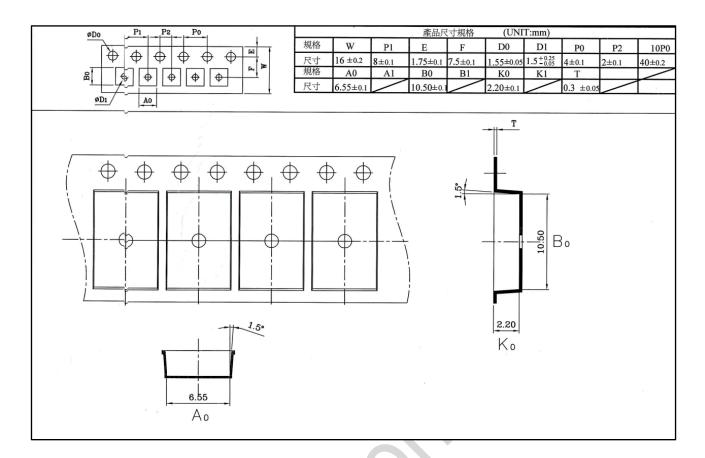



图 18. CMT826X NB SOIC-16 编带信息

# 15 文档变更记录

表 17. 文档变更记录

| 版本号 | 章节 | 变更描述            | 日期         |
|-----|----|-----------------|------------|
| 0.1 | 所有 | 初始版本            | 2023/2/8   |
| 0.0 | 13 | 修改丝印信息          | 0000/0/0   |
| 0.2 | 15 | 新增编带信息          | 2023/3/9   |
| 0.3 | 所有 | 删除顶部丝印章节        |            |
|     |    | 增加 CQC 证书编号     | 2023/04/20 |
| 0.4 | 所有 | 隔离电压改为 5.7kVrms | 2024/3/21  |
|     |    | 订购信息增加 MSL 等级信息 | 2024/12/3  |

## 16 联系方式

深圳市华普微电子股份有限公司

中国广东省深圳市南山区西丽街道万科云城三期 8A 栋 30 层

邮编: 518052

电话: +86 - 755 - 82973805

销售: sales@hoperf.com

网址: www.hoperf.cn



深圳市华普微电子股份有限公司(以下简称: "HOPERF")保留随时更改、更正、增强、修改 HOPERF 产品和/或本文档的权利,恕不另行通知。非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。由于产品版本升级或其他原因,本文档内容会不定期进行更新。HOPERF 的产品不建议应用于生命相关的设备和系统,在使用该器件中因为设备或系统运转失灵而导致的损失,HOPERF 不承担任何责任。HOPERF 商标为深圳市华普微电子股份有限公司的商标,本文档提及的其他所有商标或注册商标,由各自的所有人拥有。