

ICR 电机驱动 IC

■ 产品简介

AP1511B 是一款专为IR-Cut Removable (ICR)设计的驱动IC,用来开关红外线滤光片。AP1511B 具有一个低饱和电压双向的H-bridge驱动电路,内建保护二极管疏通ICR,所产生的反馈电流,以及防止ESD的破坏。

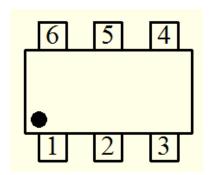
AP1511B 内的双向H-bridge 驱动电路其内阻比较小,ICR模块所需的电流决定于其线圈的阻抗。以工作电源电压5V为例,当负载通过200mA电流时,AP1511B内的H-bridge驱动电路会产生0.85V的压降。

1

AP1511B 以单线控制且提供单步操作(One-Shot)的功能。

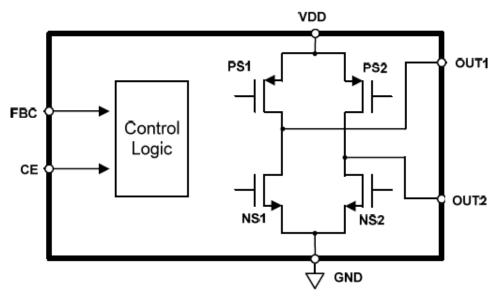
■ 产品特点

- 低待机电流: 典型值 10uA @VDD=4.5V
- 输入电压范围: 1.5V~5.5V
- 低饱和电压: 0.85V @200mA, VDD=5V
- 只需单一输入即可控制
- 封装形式: SOT26

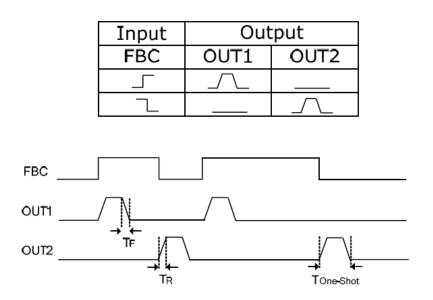

■ 产品用途

● IR-Cut Removable (ICR)专用驱动IC.

● 其它应用领域


■ 封装形式和管脚定义功能

管脚序号	管脚定义	功能说明		
S0T26				
1	CE	接外部电容		
2	GND	电源地		
3	FBC	向前向后控制端		
4	OUT1	OUT1 输出端		
5	VDD	电源端		
6	OUT2	0UT2 输出端		



■ 功能框图

■ 工作原理

TOne-Shot 的长度是由接在CE 管脚上的外部电容CE电容值所决定. 其关系式为:

Tone-Shot = 0.6 x 10^6 x CE (second) (环境温度25℃, CE电容单位F)

当外部CE电容容值固定时, IC温度每上升1℃, Tone-Shot一般会减少0.7%左右。

事实上一般的电容容值也会随温度变化,25℃时电容值为最大,偏离25℃后电容值会减小。一般温度每上升1℃,容值减少0.9%左右。

因此,建议将Tone-Shot设定为ICR所需时间的2-3倍,使得在任意温度下皆可以正常动作(具体要根据设计要求而定)。

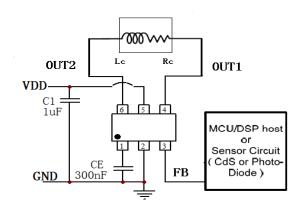
■ 极限参数

参数名称	符号	最小值	最大值	单位
电源输入电压	VDD	-0.3	+6. 0	V
逻辑输入电压	VIN	GND-0.3	VDD+0.3	V
耗散功率	PD	_	400	mW
工作温度	TOP	-20	+60	$^{\circ}$
存储温度	TSTG	-55	+105	$^{\circ}$
焊接温度	T1	_	260, 10s	$^{\circ}$

■ 电学特性

(VDD=5.0V, FBC输入端不可悬空, 温度T=25℃)

参数	符号	条件	最小值	典型值	最大值	单位
输入电压	VDD		1.5	5. 0	5. 5	V
静态电流	$Istb^*$	VOUT1=VOUT2=L	_	14	30	uA
工作电流	IDD**	VOUT1=H, VOUT2=L, NO Load	_	24	50	uA
FBC控制输入电压						
FBC输入高电平	VIH	_	1. 2		VDD	V
FBC输入低电平	VIL	_	0	ı	0.5	V
输出OUT1/OUT2						
H-bridge 驱动电压	VHB	Iout=100mA	_	0. 52	-	V
(upper + lower)	VID	Iout=200mA	_	0.85		V
输出时间	Tone-Shot	CE=100nF	30	60	90	ms
输出上升沿时间	Tr	From 0.1*VDD to 0.9*VDD	_	100	ı	ns
输出下降沿时间	TF	From 0.9*VDD to 0.1*VDD	_	100	_	ns

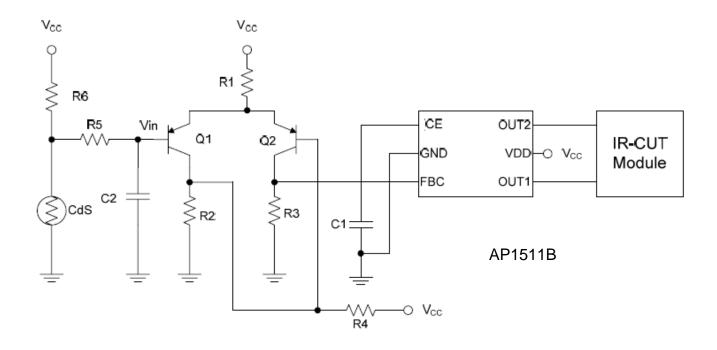

Notice:

Istb*: FBC 电平保持不变,输出 OUT1 OUT2 保持 L (低电平)时,静态电流。

 IDD^{**} : FBC 电平变化后,输出 OUT1 保持 H (高电平),OUT2 保持 L (低电平); 或 输出 OUT2 保持 H (高电平),OUT1 保持 L (低电平) 时,IDD 的工作电流。

■ 应用电路

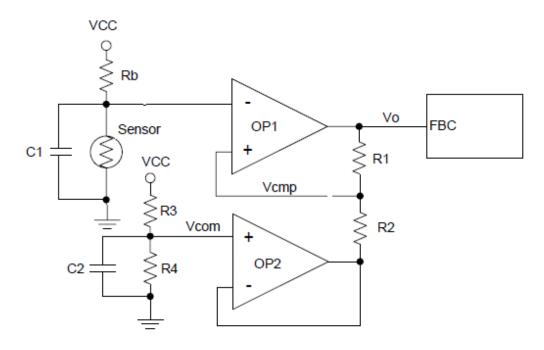
1、典型应用


VDD=5V,

Tone-Shot=0.6 x 10⁶ x 300nF =180ms (典型值)

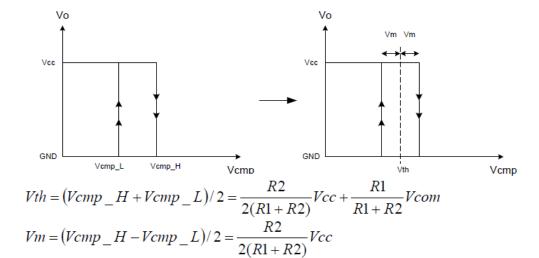
注意: FBC 端不可以悬空。其输入电压值应符合 VIH 和 VIL 电压范围。

2、扩展应用


上图为一个AP1511B 的应用线路图 光敏电阻CdS R5与R6组成光感测电路, 其输出接至延迟电路R5 以及C2。 Vin的电压大小即为目前的环境亮度。史密特触发电路(Q1, Q2 and R1-R4)用来判断目前为白天或是晚上并且控制 AP1511B FBC管脚的方向·这样ICR模块中红外线绿光片的位置就会根据环境的亮度来做切换动作。

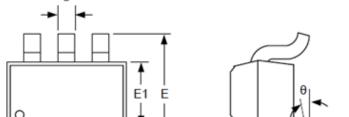
延迟电路的作用是为了确保亮度信号稳定,不会因为环境亮度瞬间改变所干扰. 当R5=200k 以及 C2=22uF 时延迟时间约为3 秒. 所以当环境亮度变化后必须超过3秒, AP1511B 才会动作,否则将视为干扰AP1511B不会动作。

史密特触发电路利用两个临界电压(VIH 与 VIL)来得到较好的噪声容忍度以避免环境干扰. 当Vin 低于VIL时, 史密特触发电路将送出低电平至FBC 管脚. 当Vin 高于VIH 时, 史密特触发电路将送出高电平至FBC 管脚。

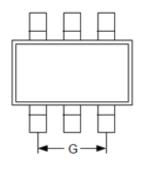

Vin 电压如果介于VIH 与 VIL 时,史密特触发电路输出电平不会改变. 此一特性可以提高噪声容忍度并且消除干扰. 临界电压可以由 R1-R4 电阻阻值来决定。

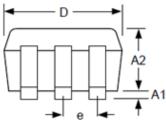
$$Vcmp_{-}H = \frac{R2}{R1 + R2}Vcc + \frac{R1}{R1 + R2}Vcom \qquad (\forall o = \forall cc)$$

$$Vcmp_{L} = \frac{R2}{R1 + R2} \cdot 0 + \frac{R1}{R1 + R2} Vcom = \frac{R1}{R1 + R2} Vcom$$
 ($\forall o = GND$)



上列公式说明OPAMP组成之史密特触发电路的 Vth 以及 Vm如何计算, 其电压值可以由 R1 与 R2 决定. 当输入讯号高于Vcmp_H或低于Vcmp_L时, 史密特触发电路的输出会改变. 此一特性可以提高噪声容忍度并且消除干扰。




■ 封装信息

View from Top Side

SYMBOLS	DIMENSION (MM)			DIMENSION (MIL)			
	MIN	NOM	MAX	MIN	NOM	MAX	
A1	0.02	0.05	0.1	0.80	2.00	4.00	
A2	1.00	1.10	1.30	40.0	44.0	52.0	
b	0.35	0.38	0.45	14.0	15.0	18.0	
С	0.10	0.15	0.20	4.0	6.0	8.0	
D	2.90	3.00	3.10	116	120	124	
E	2.70	2.80	3.00	108	112	120	
E1	1.50	1.60	1.70	60.0	64.0	68.0	
е	0.95 38						
G	1.90			1.90 76			
L	0.35	0.40	0.55	14.0	16.0	22.0	
θ	0°	8°	-	0°	8°	-	