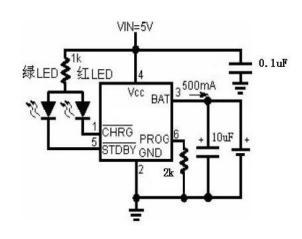


Green, RoHS Compliant, and Pb-Free Product
Package Style: SOT-23-6L

Description

The SLM4900 is a complete constant-current constant-voltage linear charger for single cell lithium-ion batteries. Its SOT-23-6L package and low external component count make the SLM4900ideally suited for portable applications. Furthermore, the SLM4900is specifically designed to work within USB power specifications.


Application

- Cellular Telephones/ PDAs/ MP3 Players
- Charging Docks and Cradles
- Bluetooth Applications

RoHS_Features

- Programmable Charge Current Up to 800mA
- No MOSFET, Sense Resistor or Blocking
- Diode Required
- Constant-Current/Constant-Voltage Opera-
- -tion with Thermal Regulation
- Charges Single Cell Li-Ion Battery Directly
- from USB Port
- Battery Reversal Protection
- Preset 4.2V Charge Voltage with ±1%
- Accuracy
- 2.9V Trickle Charge Threshold
- Available Without Trickle Charge
- Soft-Start Limits Inrush Current
- RoHS Compliant and 100% Lead (Pb)-Free

Typical Application

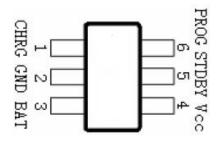


Figure 1.SOT-23-6L Package

Pin Configurations

No.	PIN	DESCRIPTION	
1s	CHRG	Open-Drain Status Output	
2	GND	Ground	
3	BAT	Charge Currrent Output	
4	VCC	Postitve Input Supply Voltage	
5	STDBY	Open-Drain Status Output	
6	PROG	Charge Currrent Program, Monitor and	
		Shutdown Pin	

CHRG(PIN 1): Open-Drain Charge Status Output. When the battery is charging, the CHRG pin is pulled low by an internal N-channel MOSFET. When the charge cycle is completed, or the SLM4900 detects an under-voltage lockout condition, CHRG is forced high impedance.

GND (PIN 2): Ground.

BAT (PIN 3): Charge Current Output. Provides charge current to the battery and regulates the final float voltage to 4.2V. An internal precision resistor divider from this pin sets the float voltage which is disconnected in shutdown mode.

VCC (PIN 4): Positive Input Supply Voltage. Provides power to the charger. VCC can range from 4. 5V to 6.5V and should be bypassed with at least a 1µF capacitor.

CHRG(PIN 5): Open-Drain Charge Status Output. When the battery is full, the STDBY pin is pulled low by an internal N-channel MOSFET. Otherwise, STDBY is forced high impedance.

PROG (PIN 6): Charge Current Program, Charge Current Monitor and Shutdown Pin. The charge current is programmed by connecting a 1% resistor, RPROG, to ground. When charging in constant- -current mode, this pin servos to 1V. In all modes, the voltage on this pin can be used to meas- -ure the charge current using the following formula:

IBAT =900VPROG/RPROG

The PROG pin can also be used to shutdown the charger. Disconnecting the program resistor from ground allows a 3µA current to pull the PROG pin high. When it reaches the 1.94V shutdown threshold voltage, the charger enters shutdown mode, charging stops and the input supply current drops to 25µA.

Standalone Linear Li-Ion Battery Charger

_Absolute Maximum Ratings (1)

Parameter	Rating
Input Supply Voltage (VCC)	-0.3V to +8V
PROG (VPROG)	VCC +0.3V
BAT (VBAT)	+8V
CHRG(VCHRG)	+8V
CHRG(VCHRG)	+8V
BAT Short-Circuit Duration (IBAT)	850mA
Maximum Junction Temperature	+125°C
Operating Ambient Temperature Range	-65°C to +125°C
Storage Temperature Range	-40°C to +85°C
Lead Temperature (Soldering, 10s)	+300°C

_Operating Ambient Range (2)

Parameter	Sysmbol	Range	Unit
Input Supply Voltage	Vcc	-0.3~+8	V
Junction Temperature	Tj	-40~+80	${\mathbb C}$

Electrical Characteristics

(VCC = 5V, TJ= 25 °C, unless otherwise noted)

Parameter	Sysmbol	CONDITIONS	MIN	TYP	MA	UNIT
					X	S
Input Supply Voltage	VCC		4.25		6.5	V
		Charge Mode , RPROG = 10k		190		
	100	Standby Mode		85		
Input Supply Current	ICC	Shutdown Mode	45		μA	
		(RPROG Not			μΛ	
		Connected, VCC < VBAT,				
		or VCC < VUV)				

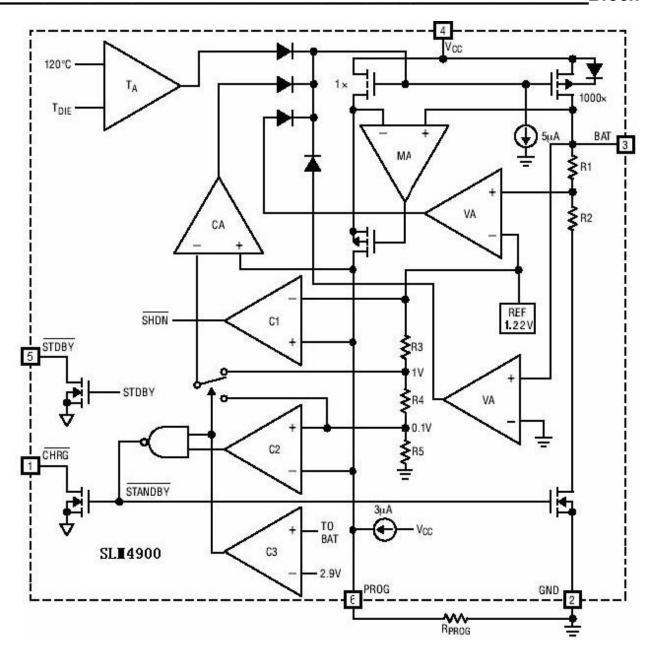
Standalone Linear Li-Ion Battery Charger

Regulated Output (Float)	VFLOAT	0°C≤TJ≤85°C,	4.158	4.2	4.24	
Voltage		IBAT=40mA				V
		RPROG = 10k, Current		90		ъ Л
		Mode				mA
		RPROG = 2k, Current		450		ъ Л
		Mode				mA
BAT Pin Current	IBAT	Standby Mode, VBAT =		2.5		
		4.2V				μA
		Shutdown Mode		±0.1		
		(RPROG Not Connected)				μA
		Sleep Mode, VCC = 0V		±0.1		μΑ
Trickle Charge Current	ITRIKL	VBAT <vtrikl,< td=""><td></td><td>8</td><td></td><td>mA</td></vtrikl,<>		8		mA
		RPROG= 10K				ША
Trickle Charge Threshold	VTRIKL	RPROG = 10k, VBAT		2.9		
Voltage		Rising				V
Manual Shutdown Threshold	VMSD	PROG Pin Rising			1.25	V
Voltage		PROG Pin Falling			1.2	V
VCC - VBAT Lockout	VASD	VCC from Low to High		100		mV
Threshold Voltage		PROG Pin Falling		30		IIIV
C/10 Termination Current	ITERM	RPROG= 10K(4)		10		mA
Threshold		R PROG= 2K		45		ША
PROG Pin Voltage	VPROG	RPROG=10K,充电		1		>
CHRG Pin Weak Pull-Down	ICHRG	VCHRG=5V		0		uA
Current						
CHRG Pin Output Low	VCHRG	ICHRG=5mA		0.35		٧
Voltage						
STDBY Pin Weak Pull-Down	ISTDBY	VSTDBY=5V		0		uA
Current						
STDBY Pin Output Low	VSTDBY	ISTDBY=5mA		0.35		V
Voltage						
Recharge Battery Threshold	ΔVRHRG	VFLOAT- VRECHRG		150		mV
Voltage						
Junction Temperatur	TLIM			120		$^{\circ}$
Soft-Start Time	tss	IBAT=0至1000V/RPROG		100		uS
Recharge Comparator Filter	tRECHR	VBAT Low to High		2		mS
Time	G					

Standalone Linear Li-Ion Battery Charger

Termination Comparator		IBAT to ICHRG /10	1000	uS
Filter Time				
PROG Pin Pull-Up Current	IPROG		1	uA

Note1: Absolute Maximum Ratings are those values beyond which the life of the device may be impaired.


Note2: The SLM4900are NOT guaranteed to meet performance specifications OUT of this Range.

Note3: Supply current includes PROG pin current (approximately 100uA) but does not include any current delivered to the battey through the BAT pin (approximately 100mA).

Note4: I_{TERM} is expressed as a fraction of measured full charge current with indicated PROG resistor.

Block

Standalone Linear Li-Ion Battery Charger

_Application Information

Status Indications

Battery connected						
Status	Red LED (Charge)	Green LED (STDBY)				
Charge	Light	Dark				
Full	Dark	Light				
Vcc under-voltage, or battery reversal	Dark	Dark				
Battery not connected						
Status	Red LED (Charge)	Green LED (STDBY)				
A 10uF capacitor is connected between BAT pin and GND pin	Flicker	Light				
A 100k resistor is connected between VCC pin and BAT pin	Dark	Light				
A 5k resistor is connected between VCC pin and BAT pin	Dark	Dark				

Stability Considerations

The constant-voltage mode feedback loop is stable without an output capacitor provided a battery is connected to the charger output. With no battery present, an output capacitor is recommended to reduce ripple voltage.

In constant-current mode, the PROG pin is in the feedback loop, not the battery. The constant-current mode stability is affected by the impedance at the PROG pin. With no additional capacitance on the PROG pin, the charger is stable with program resistor values as high as 20k. However, additional capacitance on this node reduces the maximum allowed program resistor.

7/9

Standalone Linear Li-Ion Battery Charger

VCC Bypass Capacitor

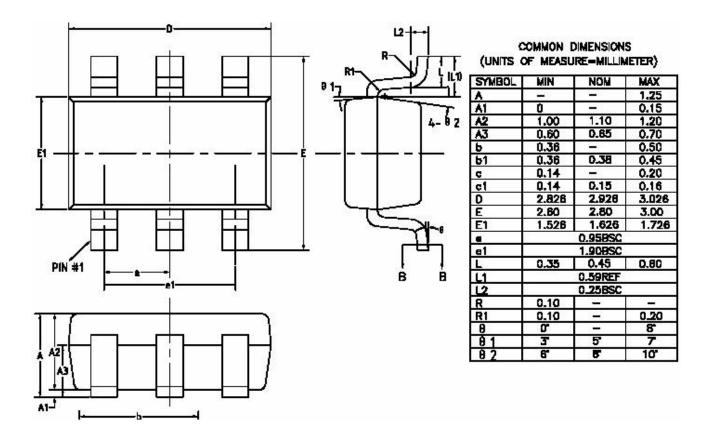
Many types of capacitors can be used for input bypassing, however, caution must be exercised when using multilayer ceramic capacitors. Because of the self-resonant and high Q characteristics of some types of ceramic capacitors, high voltage transients can be generated under some start-up conditions, such as connecting the charger input to a live power source. 0.1uF or 1uF capacitor is recommended for VCC bypass capacitor

Power Dissipation

The conditions that cause the SLM4900to reduce charge current through thermal feedback can be approximated by considering the power dissipated in the IC. Nearly all of this power dissipation is generated by the internal MOSFET is calculated to be approximately:

PD=(VCC-VBAT) IBAT

The approximate ambient temperature at which the thermal feedback begins to protect the IC is:


 $TA=120 \ C-PD \ JA = 120 \ C-(VCC-VBAT) \ IBAT \ \theta JA$

Thermal Considerations

Because of the small size of the SOT-23-6L package, it is very important to use a excellent thermal PC board layout to maximize the available charge current. The thermal path for the heat generated by the IC is from the die to the copper lead frame, through the package leads, (especially the ground lead) to the PCB board copper. The PCB board copper is the heat sink. The footprint copper pads should be as wide as possible and expand out to larger copper areas to spread and dissipate the heat to the surrounding ambient. Other heat sources on the board, not related to the charger, must also be considered when designing a PCB board layout because they will affect overall temperature rise and the maximum charge current.

Package Information

