低功耗蓝牙(BLE5.3)透传模块规格书

VGLT218T240N0S1

Version: V1. 0

深圳市沃进科技有限公司

Shenzhen Vollgo Technology Co., Ltd.

(版权所有,翻版必究)

目录

1,	概述	1
2,	主要参数规格	2
3,	引脚位置图	4
4、	引脚说明	5
5,	硬件设计	7
	5.1、硬件连接示意图	7
	5.2、电源相关注意事项	7
	5.3、模组布局摆放	8
6,	编程开发注意事项	9
7、	AT 命令	11
	7、1、AT 命令格式	11
	7. 2、 AT 命令说明	12
	7.2.1、AT 测试	12
	7.2.2、广播设备名称	12
	7.2.3、串口波特率	13
	7.2.4、MAC 地址	14
	7.2.5、固件版本	14
	7.2.6、软复位重启设备	15
	7.2.7、广播周期	15
	7.2.8、广播自定义内容	15
	7.2.9、产品识别码	16
	7.2.10、发射功率	17
	7.2.11、连接间隔	17
	7.2.12、主机扫描	18
	7.2.13、主机模式绑定的从机 MAC 地址	18
	7.2.14、主机模式绑定的从机广播名称	19
	7.2.15、主机透传功能服务 UUID	20
	7.2.16、单载波	21
	7.2.17、透传数据通道	21
	7.2.18、写数据反馈开关	22
	7.2.19、主机扫描结果	23
8,	回流焊曲线图	28
9,	静电损坏警示	28
10	、封装尺寸	29
11	、版本更新说明	30
12	、采购选型表	30
13	、声明	30
14	、联系我们	31

1、概述

VGLT218T240N0S1 是一款基于 PAN107 低功耗 5.3 蓝牙芯片实现的蓝牙从机透传模块。通过与设备 MCU 控制器连接配合,可快速实现设备与手机、平板、模组等蓝牙 BLE 设备的连接和数据通信,用户只需简单配置即可实现多种功能,开发简单。

应用:

- 1、电力、医疗检测
- 2、键盘、鼠标、游戏手柄
- 3、LED 灯控、插座、开关、门锁、共享产品等
- 4、农业传感器
- 5、零售店传感器
- 6、环境传感器
- 7、医疗保健

2、主要参数规格

技术指标		备注
协议规格	BLE 5.3	
设备类型	从机	
工作电压范围	$1.8 \sim 3.6 V$	一般 3.3V
工作频段	2402MHz ~ 2480MHz	
发射功率	9dBm、6dBm、4dBm、0dBm、-4dBm、-8dBm、-12dBm、-16dBm、-20dBb、-40 dBm	可配置,默认为 OdBm
广播周期	200ms, 500ms, 1000ms, 1500ms, 2000ms, 2500ms, 3000ms, 4000ms, 5000ms	可配置,默认为 500ms
连接间隔	20ms, 30ms, 50ms, 100ms, 200ms, 300ms, 400ms, 500ms, 1000ms, 1500ms, 2000ms	可配置,默认为 20ms
串口波特率	默认 115200 bps	可配置
串口最大数据 包长度	1100 字节	单包数据长度超过最大 长度用户需要自行分包 处理

广播电流	T 1 m A	发射功率: OdBm
/ 猫电视	Тур: 1mA	广播间隔: 500ms
休眠电流	Typ. 0 28u/	P02 休眠控制脚悬空或
沙城电视	Тур: 0.28иА	拉高
天线	PCB 板载天线或邮票孔外接天线	二选一应用,默认出厂
八旦		PCB 板载天线
存储温度	-55°C ~ +125°C	
工作温度	-40°C∼ +85°C	
尺寸大小	12.9 x 19.0 x 2.2mm	WxLxH

3、引脚位置图

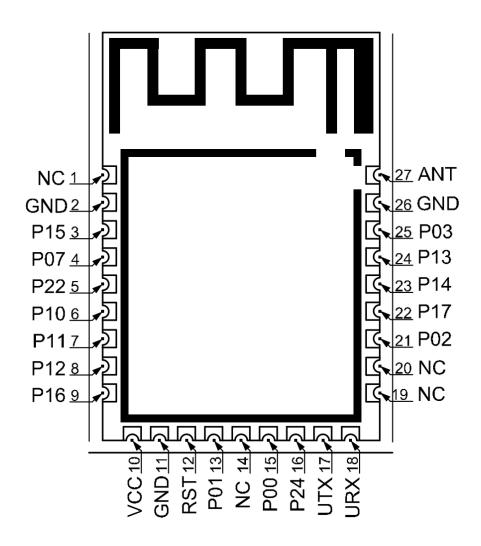


图 3-1 正面图

4、引脚说明

序号	引脚	类型	描述		
1	NC		内部悬空		
2	GND	G	接地		
3	P15	I/0	直连芯片 P15 引脚,功能可编程		
4	P07	I/0	直连芯片 P07 引脚,功能可编程		
5	P22	I/0	直连芯片 P22 引脚,功能可编程		
6	P10	I/0	直连芯片 P10 引脚,功能可编程		
7	P11	I/0	直连芯片 P11 引脚,功能可编程		
8	P12	I/0	直连芯片 P12 引脚,功能可编程		
9	P16	I/0	直连芯片 P16 引脚,功能可编程		
10	VCC	Р	电源输入, 1.8V ~ 3.7V, 一般 3.3V		
11	GND	G	接地		
12	RST	I	模组复位引脚,低电平复位。内有上拉,不使用时可悬空		
13	P01	I/0	直连芯片 P01 引脚,功能可编程		
14	NC		内部悬空		
15	P00	I/0	直连芯片 P00 引脚,功能可编程		
运行状态指示脚,工作状态下,该脚会以 1Hz 划		运行状态指示脚,工作状态下,该脚会以1Hz 频率输出方波,推挽			
10	124	0	输出。		
17	UTX	0	模组串口数据发送引脚		
18	URX	I	模组串口数据接收引脚		
19	NC		内部悬空		
20	NC		内部悬空		
21	P02	P02 I	休眠控制脚,高电平或悬空休眠,休眠后 BLE 不工作,串口不工		
21		1	作,低电平唤醒正常工作,内置上拉电阻。		

			连接状态指示脚, 主机连接从机成功或者从机被主机连接成功后,
22 P17 O		0	该引脚输出高电平,主机连接从机断开且从机被主机连接都断开
			后,该引脚会输出低电平,推挽输出。
23	P14	I/0	直连芯片 P14 引脚,功能可编程
24	P13	I/0	直连芯片 P13 引脚,功能可编程
0.5	P03	P03 I	出厂化设置脚,低电平保持5秒以上及当由低变高后恢复出厂化设
25			置,然后自动重启生效,内置上拉电阻。
26	GND	G	接地
0.7	ANT	T /0	外置天线预留接口,模块出厂默认使用 PCB 板载天线,如需出厂默
27		I/0	认使用外置天线接口请联系本司销售人员。

5、硬件设计

5.1、硬件连接示意图

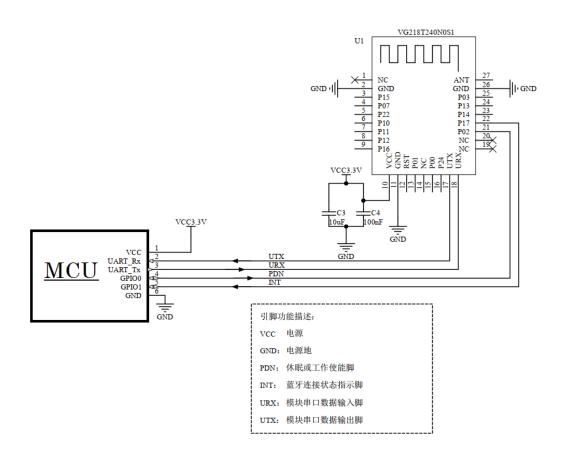
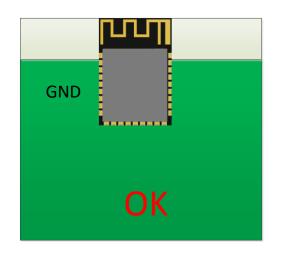
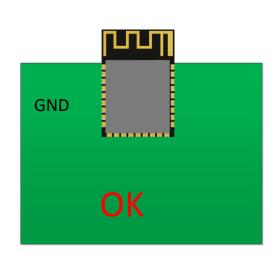


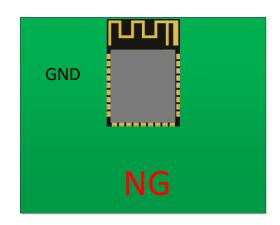
图 5-1 硬件连接示意图

5.2、电源相关注意事项

- 1、请注意电源正负极的正确接法,并确保电源电压在推荐供电电压范围,如若超出模块最大允许供电范围,会造成模块永久损坏,模块电源脚的退耦电容尽量靠近模块电源引脚。
- 2、模块供电系统中,过大的纹波可能通过导线或者地平面耦合到容易受到干扰的线路上,例如天线、馈线、时钟线等敏感信号线上,容易引起模块的射频性能变差,所以我们推荐使用 LDO 或线性稳压器作为无线模块的供电电源。
- 3、选取 LDO 或线性稳压芯片时,需要注意电源的散热以及电源稳定输出电流的驱动能力;考虑整机的长期稳定工作,推荐预留 50%以上电流输出余量。
 - 4、最好给模块单独使用一颗 LDO 或线性稳压器供电;如果采用 DC-DC 电源芯片,后面可以加一个




LDO 或线性稳压器作为模块电源的隔离,防止开关电源芯片的噪声干扰射频的工作性能。


- 5、MCU 与模块之间的通信线若使用 5V 电平,必须串联 1K-5.1K 电阻(不推荐,仍有损坏风险)。
- 6、射频模块尽量远离高压器件,因为高压器件的电磁波也会对射频信号产生一定的影响。
- 7、高频数字走线、高频模拟走线、大电流电源走线尽量避开模块下方,若不得已必须经过模块下方,需走线在摆放模块的 PCB 底板另一层,并保证模块下面铺铜良好接地。

5.3、模组布局摆放

射频信号的辐射与接收是通过天线实现的,接地的铜皮对射频具有很强的吸收作用,所以 PCB 板载天线不能被底板上的铜皮覆盖包围,也不能被电池或其它金属等器件覆盖包围,否则通讯距离大大缩减。

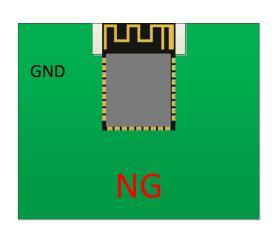


图 5-2 模块的摆放布局建议

6、编程开发注意事项

1、模块主要参数默认配置表

序列	模块参数	出厂默认参数		
1	串口参数	波特率: 115200bps, 停止位: 1, 数据位: 8, 校验: 无		
2	发射功率	0 dBm		
3	广播间隔	500ms		
4	连接间隔	20ms		

- 2、串口打印日志说明
 - ●+POWERON: 设备上电
 - ●+CONNECT-\${ROLE}-\${INDEX}: 设备连接成功,主机连接从机成功或者从机连接主机成功,
 - ▶\${ROLE}为角色
 - ▶\${INDEX}为连接设备索引
- ●+CONNECT fail-\${ROLE}-\${INDEX}:设备连接成功,主机连接从机成功或者从机连接主机成功
 - ▶\$ {ROLE} 为角色
 - ▶\${INDEX}为连接设备索引
 - ●+DISCONNECT-\${ROLE}-\${INDEX}:设备断开连接,主机断开从机连接或者从机断开主机连接
 - ▶\$ {ROLE} 为角色
 - ▶\${INDEX}为连接设备索引
- ●+MTU-\${1en}: 设备发送数据包最大长度,\${1en}为数据包长度,可根据该参数做透传数据分包处理
 - ●+UUID NOTIFY OK: 主机模式订阅 UUID 通知成功
 - ●+UUID WRITE OK: 主机模式获取 write 写句柄成功
 - ●+WRITE OK: 主机向从机写数据成功或者从机向主机写数据成功

፟ ※ 沃进科技

3、透传服务 UUID

服务 UUID: Oxffe0

特征 UUID: Oxffe2, 属性: notify

特征 UUID: Oxffel, 属性: write、write no response

4、发送串口配置命令无响应

- 1) 配置命令格式不对
- 2) 串口配置不一致

5、串口最大包长

串口最大数据包长度为1100字节,超过最大长度用户需要自行分包处理。

6、模块的休眠与唤醒

当模块 P02 引脚悬空或高电平时,模块进入休眠模式,整个模块不工作;当模块从休眠模式中唤醒(模块 P02 脚从高电平变成低电平)后需要延时大于 5ms,待模块稳定工作后才能往模块串口发数据。

7、AT 命令

7、1、AT 命令格式

功能	命令格式
AT 测试	AT
执行命令	AT+CMD
设置命令	AT+CMD=[params]
读取命令	AT+CMD?
属性命令	AT+CMD=?

必读注意:

- ▶ AT 命令区分大小写
- ➤ AT 命令以回车换行符+空格(\0)结束,即\r\n\0
- ▶ AT 命令返回值以及主动打印日志都以回车换行符+空格(\0)结束,即\r\n\0
- ▶ 所有可设置的参数都可以掉电保存,不可频繁操作设置,操作设置之前可以先读取当前值,避免频繁操作
- ▶ 命令执行成功返回+OK,失败返回+ERP
- ▶ 串口最大数据包长度为1100字节,超过最大长度用户需要自行分包处理
- ▶ 主机 APP 下发数据包最大长度应根据 MTU 值做分包处理,有效数据包一般为 MTU-3 字节
- ▶ 如果主机模式绑定的从机 MAC 地址或主机模式绑定的从机广播名称不为空,重新上电或者主机扫描启动后,将自动启动主机扫描,扫描到对应的设备后将自动连接。

7. 2、 AT 命令说明

7.2.1、AT 测试

命令: AT

执行操作

命令: AT\r\n\0

返回值: +OK

7.2.2、广播设备名称

命令: AT+NAM

默认值

VG218-\${MACADDR},\${MACADDR}为 MAC 地址的后 4 字节的 hex 字符串,比如设备的 mac 地址为 D0:00:0C:2E:88:5F 则广播名称为 VG218-0C2E885F

设置操作

命令: AT+NAM=\${name}\r\n\0

读取操作

命令: AT+NAM?\r\n\0

返回值: +NAM:\${name}\r\n\0

参数说明

\${name} 设置值范围:最大长度 16 字符

7.2.3、串口波特率

命令: AT+BPS

默认值

- 串口波特率: 115200
- 校验位: 0, 无校验
- 停止位: 1,1位停止位

设置操作

命令: AT+BPS=\${baudrate},\${parity},\${stop_bits}\r\n\0

读取操作

命令: AT+BPS?\r\n\0

返回值: +BPS:\${baudrate},\${parity},\${stop_bits}\r\n\0

参数说明

- *\${baudrate}* 设置值范围: 2400、4800、9600、19200、38400、57600、115200
- *\${parity}* 设置值范围:
 - ▶ 0: 无校验
 - ▶ 1: 奇校验
 - ▶ 2: 偶校验
 - ➤ 3: MASK 校验
 - ➤ 4: SPACE 校验
 - ▶ 其他,无效
- *\${stop bits}* 设置值范围:
 - 0: 0.5 位停止位
 - 1: 1 位停止位
 - 2: 1.5 位停止位
 - 3: 2 位停止位

7.2.4、MAC 地址

命令: AT+MAC

默认值

出厂自动生成

设置操作

命令: AT+MAC=\${macAddr}\r\n\0

读取操作

命令: AT+MAC?\r\n\0

返回值: +MAC:\${macAddr}\r\n\0

参数说明

\${macAddr} 设置值: 固定长度 12 字符

- 00000000000000, 恢复默认 MAC 地址
- 其他,固定地址

7.2.5、固件版本

命令: AT+VER

默认值: 当前版本

读取操作

命令: AT+VER?\r\n

返回值: +VER:\${version}\r\n\0

参数说明

\${version} 固件版本值: 比如 V1.0.0

7.2.6、软复位重启设备

命令: AT+RST

设置操作

命令: AT+RST=\${status}\r\n\0

参数说明

\${status} 设置值范围: 固定为1

7.2.7、广播周期

命令: AT+ADP

默认值

500

设置操作

命令: AT+ADP=\${period}\r\n\0

读取操作

命令: AT+ADP?\r\n\0

返回值: +ADP: \${period} \r\n\0

参数说明

\${period} 设置值范围: 200、500、1000、1500、2000、2500、3000、4000、5000, 单位: 毫秒

7.2.8、广播自定义内容

命令: AT+ADD

默认值

无广播自定义内容

设置操作

命令: AT+ADD=\${dataType}\${advData}\r\n\0

读取操作

命令: AT+ADD?\r\n\0

返回值: +ADD: \${dataType}\${advData}\r\n\0

参数说明

- *\${dataType}* 设置值范围:
 - ➤ HEX, 比如设置: AT+ADD=HEX0102, 则广播自定数据为 0x0102
 - ▶ STR, 比如设置: AT+ADD=STR0102, 则广播自定数据为 0x30313032
- *\${advData}* 设置值范围:最大长度 16 字符,比如 0123456789ABCDEF

7.2.9、产品识别码

命令: AT+PID

默认值

0000

设置操作

命令: AT+PID=\${identifyCode}\r\n\0

读取操作

命令: AT+PID?\r\n\0

返回值: +PID: \$ {identifyCode} \r\n\0

参数说明

\${identifyCode} 设置值范围: hex 字符串,比如设置 AT+PID-1234,实际对应的产品识别码为 0x1234

7.2.10、发射功率

命令: AT+TPL

默认值

0

设置操作

命令: AT+TPL=\${power} \r\n\0

读取操作

命令: AT+TPL?\r\n\0

返回值: +TPL:\${power}\r\n\0

参数说明

\${power} 设置值范围: 9、6、4、0、-4、-8、-12、-16、-20、-40, 单位: dbm

7.2.11、连接间隔

命令: AT+CIT

默认值

20

设置操作

命令: AT+CIT=\${period}\r\n\0

读取操作

命令: AT+CIT?\r\n\0

返回值: +CIT:\${period}\r\n\0

参数说明

\${period} 设置值范围: 20、30、50、100、200、300、400、500、1000、1500、2000, 单位: 毫秒

7.2.12、主机扫描

命令: AT+SCN

默认值

2

设置操作

命令: AT+SCN=\${status}\r\n\0

读取操作

命令: AT+SCN?\r\n\0

返回值: +SCN: \$ {status} \r\n\0

参数说明

\${status} 设置值说明:

- ▶ 0: 停止扫描
- ▶ 1: 不打印扫描结果,如果设置了目标设备名称或者目标设备 MAC 地址(目标设备 MAC 地址 匹配优先),则扫描到目标设备后自动连接
- ▶ 2: 打印扫描结果,如果设置了目标设备名称或者目标设备 MAC 地址(目标设备 MAC 地址匹配优先),则扫描到目标设备后自动连接,扫描结果详见主机扫描结果

7.2.13、主机模式绑定的从机 MAC 地址

命令: AT+CNM

默认值

无

设置操作

命令: AT+CNM=\${macAddr}\r\n\0

读取操作

命令: AT+CNM?\r\n\0

返回值: +CNM:\${macAddr}\r\n\0

参数说明

\${macAddr} 设置值说明:

- NULL,设备名称匹配无效,设置操作有效,读取操作返回为空(+CNM:)
- 其他,固定长度 12 字符, hex 字符串格式,设备名称匹配有效,在扫描过程中,如果扫描 到该 MAC 地址的设备,则自动连接

7.2.14、主机模式绑定的从机广播名称

命令: AT+CNN

默认值

无

设置操作

命令: AT+CNN=\${deviceName}\r\n\0

读取操作

命令: AT+CNN?\r\n\0

返回值: +CNN:\${deviceName}\r\n\0

参数说明

\${deviceName} 设置值说明:

- NULL,设备名称匹配无效,设置操作有效,读取操作返回为空(+SCN:)
- 其他,最大长度 16 字符,设备名称匹配有效,在扫描过程中,如果广播数据中包含该名称,则自动连接

7.2.15、主机透传功能服务 UUID

命令: AT+UUID

默认值

- write 写操作服务 UUID: FFE0
- write 写操作特征 UUID: FFE1
- notify 通知服务 UUID: FFE0
- notify 通知特征 UUID: FFE2
- write 写操作模式: 0

设置操作

命令:

 $\label{local-to-def-state} $$AT+UUID=${writeServerUuid}, ${writeCharactUuid}, ${notifyCharactUuid}, ${writeMode}\r\n\0 $$

读取操作

命令: AT+UUID?\r\n\0

返回值:

参数说明

- *\${writeServerUuid}* 设置值说明: write 写操作服务 UUID, hex 字符串格式,比如 1234
- *\${writeCharactUuid}* 设置值说明: write 写操作特征 UUID, hex 字符串格式,比如 5678
- *\${notifyServerUuid}* 设置值说明: notify 通知服务 UUID, hex 字符串格式,比如 9ABC
- *\${notifyCharactUuid}* 设置值说明: notify通知特征 UUID, hex 字符串格式,比如 DEFO
- *\${writeMode}* 设置值说明: write 写操作模式

- ▶ 0,写数据无需确认
- ▶ 1, 写数据需确认, 操作比较耗时

7.2.16、单载波

命令: AT+CW

设置操作

命令: AT+CW=\${channel}\r\n\0

参数说明

\${channe1} 设置值说明:

- 比如 AT+CW=2402\r\n\0,表示打开单载波,中心频点为 **2402MHz**,发射功率为章节发射功率设置的值
- 其他,关闭单载波

7.2.17、透传数据通道

命令: AT+CCH

默认值

20

设置操作

命令: AT+CCH=\${dataCh}\r\n\0

读取操作

命令: AT+CCH?\r\n\0

返回值: +CCH:\${dataCh}\r\n\0

参数说明

\${dataCh} 设置值说明:

- 10,第一个字符为有效判断位,串口透传数据为主机透传到从机的数据通道
- 20,第一个字符为有效判断位,串口透传数据为从机透传到主机的数据通道

7.2.18、写数据反馈开关

命令: AT+WRR

默认值

0

设置操作

命令: AT+WRR=\${status}\r\n\0

读取操作

命令: AT+WRR?\r\n\0

返回值: +WRR:\${status}\r\n\0

参数说明

\${status} 设置值说明:

- 0, 主机向从机 write 写数据完成后, 不打印结果日志
- 1, 主机向从机 write 写数据完成后, 打印结果日志
 - ➤ 成功: +WRITE OK
 - ➤ 失败: +WRITE ERP

7.2.19、主机扫描结果

打印数据格式如下:

+SCN: \${macAddr}, \${rssi}, \${advDataHex}

打印日志示例:

+SCN: 78A5410508D6, -110, 1EFF060001092002CAD2CD58C1CFE855B911F64BE8B70840D9A96B1D567140

\${advDataHex}格式说明:

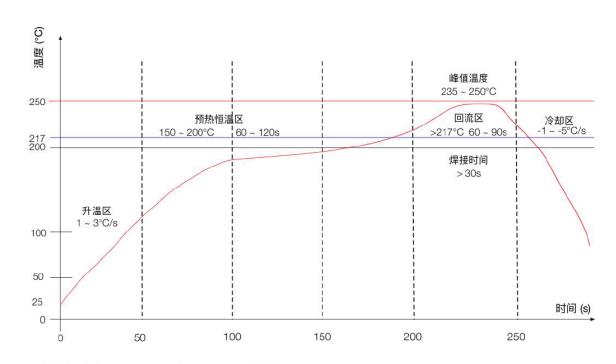
长度	类型	值
Length (1 byte)	AD Type (1 byte)	AD Data (0-31 bytes)

类型说明:

数据类型(Type)	值(Value)	描述 (Description)
Flags	0x01	指示设备的功能,例如通用发现模式或 BR/EDR 支持情况。
Incomplete List of 16- bit Service Class UUIDs	0x02	未完整列出的 16 位服务类 UUID。

፟ 沃进科技

数据类型(Type)	值(Value)	描述 (Description)
Complete List of 16- bit Service Class UUIDs	0x03	完整列出的 16 位服务类 UUID。
Incomplete List of 32- bit Service Class UUIDs	0x04	未完整列出的 32 位服务类 UUID。
Complete List of 32- bit Service Class UUIDs	0x05	完整列出的 32 位服务类 UUID。
Incomplete List of 128-bit Service Class UUIDs	0x06	未完整列出的 128 位服务类 UUID。
Complete List of 128- bit Service Class UUIDs	0x07	完整列出的 128 位服务类 UUID。
Shortened Local Name	0x08	缩短的本地设备名称。
Complete Local Name	0x09	完整的本地设备名称。


数据类型(Type)	值(Value)	描述 (Description)
Tx Power Level	OxOA	发射功率级别。
Class of Device	OxOD	设备类别。
Simple Pairing Hash C-	0x0E	简单配对的 Hash C-192。
Simple Pairing Randomizer R-192	0x0F	简单配对的随机数 R-192。
Device ID	0x10	设备 ID。
Security Manager Out of Band (OOB) Flags	0x11	安全管理器 00B 标志。
Slave Connection Interval Range	0x12	从设备连接间隔范围。
Service Solicitation: 16-bit UUIDs	0x14	服务请求: 16 位 UUID。
Service Solicitation: 32-bit UUIDs	0x1F	服务请求: 32 位 UUID。

数据类型(Type)	值(Value)	描述 (Description)
Service Solicitation: 128-bit UUIDs	0x15	服务请求: 128 位 UUID。
Service Data: 16-bit UUID	0x16	服务数据: 16 位 UUID。
Service Data: 32-bit UUID	0x20	服务数据: 32 位 UUID。
Service Data: 128-bit	0x21	服务数据: 128 位 UUID。
Public Target Address	0x17	公共目标地址。
Random Target Address	0x18	随机目标地址。
Appearance	0x19	外观。
Advertising Interval	0x1A	广播间隔。
LE Bluetooth Device Address	0x1B	低功耗蓝牙设备地址。

数据类型(Type)	值(Value)	描述 (Description)
LE Role	0x1C	低功耗角色。
Simple Pairing Hash C- 256	0x1D	简单配对的 Hash C-256。
Simple Pairing Randomizer R-256	0x1E	简单配对的随机数 R-256。
URI	0x24	统一资源标识符(URI)。
Indoor Positioning	0x25	室内定位。
Transport Discovery Data	0x26	传输发现数据。
LE Supported Features	0x27	低功耗支持的功能。
Channel Map Update Indication	0x28	

8、回流焊曲线图

升温区 - 温度: 25~150°C 时间: 60~90s 升温斜率: 1~3°C/s

预热恒温区 - 温度: 150~200℃ 时间: 60~120s

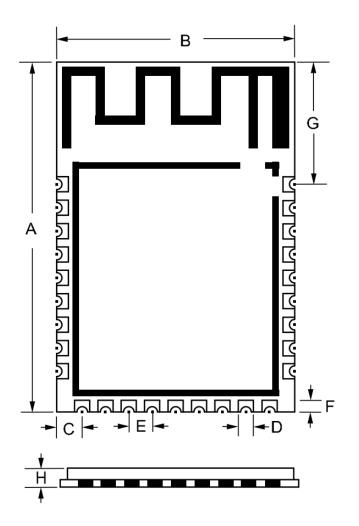
回流焊接区 - 温度: >217°C 时间: 60~90s; 峰值温度: 235~250°C 时间: 30~70s

冷却区 — 温度: 峰值温度 ~ 180°C 降温斜率 -1 ~ -5°C/s

焊料 - 锡银铜合金无铅焊料 (SAC305)

9、静电损坏警示

射频模块为高压静电敏感器件,为防止静电对模块的损坏


- 1、严格遵循防静电措施,生产过程中禁止裸手触碰模块。
- 2、模块应该放置在能够预防静电的放置区。
- 3、在产品设计时应该考虑高压输入处的防静电保护电路。

10、封装尺寸

机械尺寸(unit:mm)

编号	尺寸(mm)	误差(mm)
A	19.0	± 0.5
В	12.9	± 0.5
С	1.3	±0.1
D	0.8	±0.1
Е	1. 27	±0.1
F	0.6	±0.1
G	6. 6	±0.1
Н	2. 2	±0.5

11、版本更新说明

版本	更新内容	更新日期
V1.0	初始版本	2025年1月15日

12、采购选型表

序号	型号	说明
1	VGLT218T240N0S1	2.4G BLE 蓝牙透传模组,编带包装\托盘包装

13、声明

- 1、由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使 用指导,本文中的所有陈述、信息和建议不构成任何明示或暗示的担保。
- 2、本公司保留所配备全部资料的最终解释和修改权,如有更改恕不另行通知。

14、联系我们

公司: 深圳市沃进科技有限公司

地址: 广东省深圳市龙华区大浪街道新石社区浪花路 8 号名牌创意时尚广场 1301

电话: 0755-23040053

传真: 0755-21031236

邮箱: sales@vollgo.com

网址: http://www.vollgo.cn

淘宝企业店: https://voll.taobao.com

