

Si522

13.56MHz reader/writer for contactless communication

1 Introduction

This document describes the functional and electrical characteristics of the contactless reader/writer Si522.

2 General description

Si522 is a highly integrated NFC front-end for contactless communication at 13.56 MHz. Enabled in Reader/Writer mode for ISO/IEC 14443A, the Si522's internal transmitter part is able to drive a reader/writer antenna designed to communicate with ISO/IEC 14443A cards and transponders without additional active circuitry. The receiver part provides a robust and efficient implementation of a demodulation and decoding circuitry for signals from ISO/IEC 14443A compatible cards and transponders. The digital part handles the complete ISO/IEC 14443A framing and error detection (Parity and CRC).

Si522 supports enables contactless communication.

Various host controller interfaces are implemented:

- SPI interface
- Serial UART (similar to RS232 with voltage levels according pad voltage supply)
- I² C interface.

Content

1 Introduction	1
2 General description	1
3 Feature and benefits	3
4 Quick reference data	4
5 Block diagram	6
6 Pinning information	7
7 Functional description	0
7.1 Digital interfaces	1
7.1.1 Automatic microcontroller interface detection	1
7.1.2 SPI	1
7.1.3 UART interface	5
7.1.4 I ² C	8
7.2 FIFO	8
7.3Interrupt request system	9
7.4 Power reduction modes	9
7.4.1 Hard power-down	9
7.4.2 Soft power-down mode	9
7.4.3 Transmitter power-down mode	0
8 Command set	1
8.1 General description	1
8.2 General characteristics	1
8.3 Command overview	1
9 Register mapping	3
10 Typical application schematic	1
11 Package outline	2
12 Version information4	4
13 Order information	5
14 Technical Support and Contact information	6

3 Feature and benefits

- Highly integrated analog circuitry to demodulate and decode responses
- Buffered output driver with minimal peripheral components connected to the antenna
- Supports ISO/IEC 14443 A
- Typical operating distance in Read/Write mode up to 50 mm depending on the antenna size and tuning
- Supports ISO/IEC 14443 A higher rate communication, up to 848 kBd
- Supported host interfaces
 - -SPI up to 10 Mbit/s
 - $-I^2C$
 - -RS232 Serial UART up to 1228.8 kBd, with voltage levels dependant on pin voltage supply
- buffer handles 64 byte send and receive
- Flexible interrupt modes
- Hard reset with low power function
- Power-down by software
- Programmable timer
- Internal oscillator for connection to 27.12 MHz quartz crystal
- 2.5 V to 3.6 V power supply
- CRC coprocessor

4 Quick reference data

Table 4-1 Limit parameter

Condition	Min	Max	Unit			
Supply voltage						
VDD	-0.5	4	V			
Temperature						
Operating temperature	-40	+85	°C			

Table 4-2 Main parameter

Symbol	Parameter	Condition		Min	Тур	Max	Unit
VDDA	analog supply	$VDD(PVDD) \le VDDA = VDDD$	(1)	2.5	3.3	4	V
	voltage	= VDD(TVDD);					
VDDD	digital supply	VSSA = VSSD = VSS(PVSS) =		2.5	3.3	4	V
	voltage	VSS(TVSS) = 0 V					
VDD(TVDD)	TVDD supply			2.5	3.3	4	V
	voltage						
VDD(PVDD)	PVDD supply		(1)	2.5	3.3	4	V
	voltage						
VDD(SVDD)	SVDD supply	VSSA = VSSD = VSS(PVSS) =		2.5	3.3	4	V
	voltage	VSS(TVSS) = 0 V					
Ipd	power-down	VDDA=VDDD = VDD(TVDD)					
	current	= VDD(PVDD) $=$ 3.3 V					
		hard power-down;	(2)	-	1.2	1.5	uA
		pin NRSTPD set LOW					
		soft power-down;	(2)	-	1.5	2.5	uA
		RF level detector on					
IDDD	digital supply	pin DVDD; VDDD = 3.3 V		-	0.9	1.5	uA
	voltage						
IDDA	analog supply	pin AVDD; VDDA = 3.3 V,		-	2.9	4	mA
	voltage	CommandReg register's					
		RcvOff bit = 0					
		pin AVDD; receiver		-	0.8	1	mA
		switched off; VDDA = 3.3					

	V, CommandReg register's					
	RevOff bit = 1					
IDD(TVDD)		(3)	-	25	30	mA

- (1) VDDA, VDDD and VDD(TVDD) must always be the same voltage.
- (2) Ipd is the total current for all supplies.
- (3)During typical circuit operation, the overall current is below 30 mA

Table 4-3 Recommend value

Symbol	Paran	neter	Condition	Min	Тур	Max	Unit
VDDA	Analog	supply	VDD(PVDD) < VDDA =	2.5	3.3	4.0	V
	voltage		VDDD = VDD(TVDD);				
VDDD	Digital	supply	VSSA = VSSD = VSS(PVSS)	2.5	3.3	4.0	V
	voltage		= VSS(TVSS) = 0 V				
VDD(TVDD)	TVDD supply			2.5	3.3	4.0	V
	voltage						
VDD(PVDD)	PVDD	supply		2.5	3.3	4.0	V
	voltage						
VDD(SVDD)	SVDD	supply	VSSA = VSSD = VSS(PVSS)	2.5	3.3	4.0	V
	voltage		= VSS(TVSS) $=$ 0V				
	storage		QFN32	-55	-	+125	°C
	temperature						
	operating		QFN32	-40	-	+85	°C
	temperat	ure					

Note:Stresses beyond those Absolute Maximum Ratings may cause permanent damage to the device.

Table 4-4 Version information

Chip code	Description
Si522	-

5 Block diagram

The analog interface handles the modulation and demodulation of the analog signals. The contactless UART manages the protocol requirements for the communication protocols in cooperation with the host. The FIFO buffer ensures fast and convenient data transfer to and from the host and the contactless UART.

Various host interfaces are implemented to meet different customer requirements.

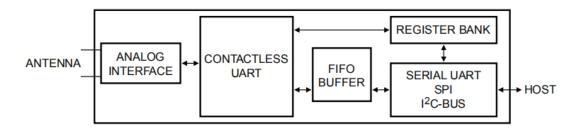


Figure 5-1 Simplified block diagram

6 Pinning information

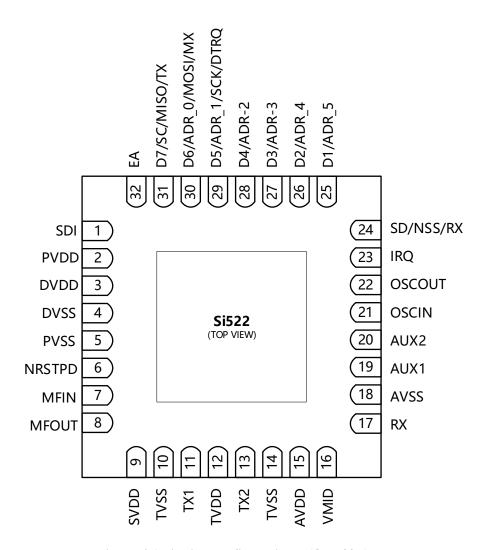


Figure 6-1 Pinning configuration (QFN32L)

Table 6-1 Pinning description

Pin	Symbol	Type[1]	Description
1	SDI	I	I ² C bus input
2	PVDD	P	Pad power supply
3	DVDD	P	Digital Power Supply
4	DVSS	P	Digital Ground
5	PVSS	P	Pad power supply ground
6	NRSTPD	I	Reset and Power Down input: When LOW, internal current sinks
			are switched off, the oscillator is inhibited, and the input pads are

			disconnected from the outside world. With a positive edge on this
			pin the internal reset phase starts.
7	MFIN	I	Test signal input
8	MFOUT	О	Test signal output
9	SVDD	P	Provides power to the MFIN/MFOUT
10	TVSS	P	Transmitter Ground: supplies the output stage of TX1 and TX2
11	TX1	О	Transmitter 1: delivers the modulated 13.56 MHz energy carrier
12	TVDD	P	Transmitter Power Supply: supplies the output stage of TX1 and TX2
13	TX2	О	Transmitter 2: delivers the modulated 13.56 MHz energy carrier
14	TVSS	P	Transmitter Ground: supplies the output stage of TX1 and TX2
15	AVDD	P	Analog Power Supply
16	VMID	Р	Internal Reference Voltage: This pin delivers the internal reference voltage.
17	RX	I	Receiver Input
18	AVSS	P	Analog Ground
19	AUX1	0	Auxiliary Outputs: These pins are used for testing.
20	AUX2	0	Auxiliary Outputs: These pins are used for testing.
21	OSCIN	I	Crystal Oscillator Input: input to the inverting amplifier of the
			oscillator. This pin is also the input for an externally generated clock
			(fosc = 27.12 MHz).
22	OSCOUT	О	Crystal Oscillator Output: Output of the inverting amplifier of the
			oscillator.
23	IRQ	0	Interrupt Request: output to signal an interrupt event
24	SD	I/O	I ² C bus serial data input and output
	NSS	I	SPI input
	RX	I	UART address input
25	D1	I/O	Test port
	ADR_5	I/O	I ² C bus address5 input

-			
26	D2	I/O	Test port
	ADR_4	I	I ² C bus address4 input
27	D3	I/O	Test port
	ADR_3	I	I ² C bus address3 input
28	D4	I/O	Test port
	ADR_2	I	I ² C bus address2 input
29	D5	I/O	Test port
	ADR_1	I	I ² C bus address1 input
	SCK	I	SPI seria clock input l
	DTRQ	О	UART makes a request to controller
30	D6	I/O	Test port
	ADR_0	I	I ² C bus address0 input
	MOSI	I/O	SPI Master Out Slave In
	MX	О	UART for the output of the controller
31	D7	I/O	Test port
	SCL	I/O	I ² C bus clock input/output
	MISO	I/O	SPI Master In Slave Out
	TX	О	UART Data output to controller
32	EA	I	External address input: can be used to define the I ² C address

¹⁾ Pin types: I = Input, O = Output, I/O = Input/Output, P = Power and G = Ground

²⁾ DVSS is the connection of heatsink pad on package underside.

7 Functional description

The Si522 transmission module supports the Read/Write mode for ISO/IEC 14443 A using various transfer speeds and modulation protocols.

Table7-1 Communication overview for ISO/IEC 14443 A reader/writer

Tai	ne/-1 Commu	nication overviev	V 101 150/1EC 12	1443 A reader/wi	ner			
Communicati	Signal type	Transfer speed						
on direction		106kBd	212kBd	424kBd	848kBd			
Reader to	reader side	100%ASK	100%ASK	100%ASK	100%ASK			
card (send	modulation							
data from the	bit encoding	modified Miller	modified Miller	modified Miller	modified Miller			
Si522 to a		encoding	encoding	encoding	encoding			
card)	bit length	(128/13.56) µs	(64/13.56) μs	(32/13.56) μs	(16/13.56) μs			
Card to	card side	subcarrier load	subcarrier load	subcarrier load	subcarrier load			
reader	modulation	modulation	modulation	modulation	modulation			
(Si522	subcarrier	13.56MHz/16	13.56MHz/16	13.56MHz/16	13.56MHz/16			
receives data	frequency							
from a card)	bit encoding	Manchester	BPSK	BPSK	BPSK			

The Si522's contactless UART and dedicated external host must manage the complete ISO/IEC 14443 A protocol. Figure 7-1 shows the data coding and framing according to ISO/IEC 14443 A.

Figure 7-1 Data coding and framing according to ISO/IEC 14443 A

The internal CRC coprocessor calculates the CRC value based on ISO/IEC 14443 A part 3 and handles parity generation internally based on the transmission rates.

Automatic parity generation can be switched off using the ManualRCVReg register's ParityDisable bit.

7.1 Digital interfaces

7.1.1 Automatic microcontroller interface detection

The Si522 supports direct interfacing of hosts using SPI, I² C or serial UART interfaces. The Si522 resets its interface and checks the current host interface type automatically after performing a power-on or hard reset. The Si522 identifies the host interface by sensing the logic levels on the control pins after the reset phase. This is done using a combination of fixed pin connections. Table 7-1 shows the different connection configurations.

Table 7-2 Connection protocol for detecting different interface types

Pin		Interface types					
	UART (input)	SPI (output)	I ² C (I/O)				
SD	RX	NSS	SD				
SDI	0	0	1				
EA	0	1	EA				
D7	TX	MISO	SC				
D6	MX	MOSI	ADR_0				
D5	DTRQ	SCK	ADR_1				
D4	-	-	ADR_2				
D3	-	-	ADR_3				
D2	-	-	ADR_4				
D1	-	-	ADR_5				

7.1.2 SPI

A serial peripheral interface (SPI compatible) is supported to enable high-speed communication to the host. The interface can handle data speeds up to 10 Mbit/s. When communicating with a host, the Si522 acts as a slave, receiving data from the external host for register settings, sending and receiving data relevant for RF interface

communication.

An interface compatible with SPI enables high-speed serial communication between the Si522 and a microcontroller. The implemented interface is in accordance with the SPI standard.

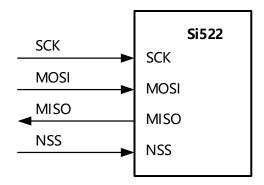


Figure 7-2 SPI connection to host

The Si522 acts as a slave during SPI communication. The SPI clock signal SCK must be generated by the master. Data communication from the master to the slave uses the MOSI line. The MISO line is used to send data from the Si522 to the master.

Data bytes on both MOSI and MISO lines are sent with the MSB first. Data on both MOSI and MISO lines must be stable on the rising edge of the clock and can be changed on the falling edge. Data is provided by the Si522 on the falling clock edge and is stable during the rising clock edge.

7.1.2.1 SPI read data

Reading data using SPI requires the byte order. It is possible to read out up to n-data bytes. The first byte sent defines both the mode and the address.

Table 7-3 MOSI and MISO byte order

Line	Byte0	Byte1	Byte2	То	Byte n	Byte n+1
MOSI	address 0	address 1	address 2		address n	00
MISO	X	data 0	data 1		data n-1	data n

NOTE: The MSB must be sent first.

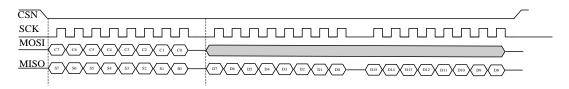


Figure 7-3 SPI read timing

7.1.2.2 SPI write data

To write data to the Si522 using SPI requires the byte order shown in Table 7-4. It is possible to write up to n data bytes by only sending one address byte. The first send byte defines both the mode and the address byte.

Table7-4 MOSI and MISO Byte order

Line	Byte 0	Byte 1	Byte 2	То	Byte n	Byte n+1
MOSI	address 0	data 0	data 1		data n-1	data n
MISO	X	X	X	•••	X	X

NOTE: The MSB must be sent first.

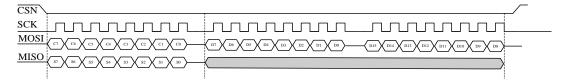


Figure 7-4 SPI write timing

7.1.2.3 SPI timing

SPI typical timing is shown in Figure 7-5 and SPI typical timing parameter is shown in Table 7-5.

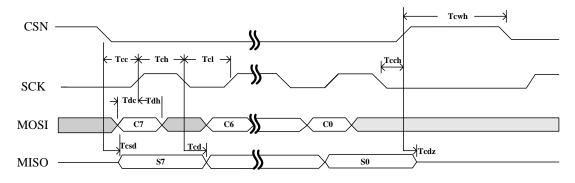


Figure 7-5 SPI typical timing

Table 7-5 SPI typical timing parameter

Symbol	Parameters	Min	Max	Units
Tdc	Data to SCK Setup	2		ns
Tdh	SCK to Data Hold	2		ns
Tesd	CSN to Data Valid		42	ns
Tcd	SCK to Data Valid		58	ns
Tcl	SCK Low Time	40		ns
Tch	SCK High Time	40		ns
Fsck	SCK Frequency	0	10	MHz
Tr,Tf	Tr,Tf SCK Rise and Fall		100	ns
Tcc	CSN to SCK Setup	2		ns
Tech	SCK to CSN Hold	2		ns
Tcwh	CSN Inactive time	50		ns
Tcdz	CSN to Output High Z		42	ns

7.1.2.4 SPI address byte

The address byte has to meet the following format. The MSB of the first byte defines the mode used. To read data from the Si522 the MSB is set to logic 1. To write data to the Si522 the MSB must be set to logic 0. Bits 6 to 1 define the address and the LSB is set to logic 0.

Table7-6 Address byte format

7 (MSB)	6: 1	0 (LSB)
1=read/0=write	Address	0

7.1.3 UART interface

7.1.3.1 Connection to a host

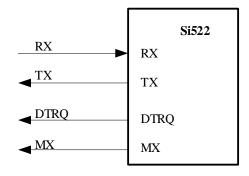


Figure 7-6 UART connection to microcontrollers

NOTE: Signals DTRQ and MX can be disabled by clearing TestPinEnReg register's RS232LineEn bit.

7.1.3.2Selectable UART transfer speeds

The internal UART interface is compatible with an RS232 serial interface.

The default transfer speed is 9.6 kBd. To change the transfer speed, the host controller must write a value for the new transfer speed to the SerialSpeedReg register. Bits BR_T0[2:0] and BR_T1[4:0] define the factors for setting the transfer speed in the SerialSpeedReg register. Different transfer speeds and relevant registers setting are shown in Table 7-7.

Table7-7 Selectable UART transfer speeds

Transfer speed	SeriaSpeedReg value	Transfer speed accuracy	
(kBd)	Decimal	Hexadecimal	(%)
7.2	250	FAh	-0.25
8.6	235	EBh	0.32
14.4	218	DAh	-0.25
19.2	203	CBh	0.32

38.4	171	ABh	0.32
57.6	154	9Ah	-0.25
115.2	122	7Ah	-0.25
128	116	74h	-0.06
230.4	90	5Ah	-0.25
460.8	58	3Ah	-0.25
921.6	28	1Ch	1.45
1228.8	21	15h	0.32

The selectable transfer speeds shown in table above are calculated according to the following equations:

transfer speed =
$$(27.12 \times 10^6) / (BR T0 + 1)$$

When BR_T0[2:0] > 0:

transfer speed =
$$(27.12 \times 10^6 \times 2^{(BR_T0-1)}) / (BR_T1 + 33)$$

NOTE: Transfer speed more than 1228.8kBd is not supported.

7.1.3.3 UART framing

Table 7-8 UART framing

Two. o cliff humang				
Bit	Length	Value		
Start	1bit	0		
Data	8bits	Data		
Stop	1bit	1		

NOTE: The LSB for data and address bytes must be sent first. No parity bit is used during transmission.

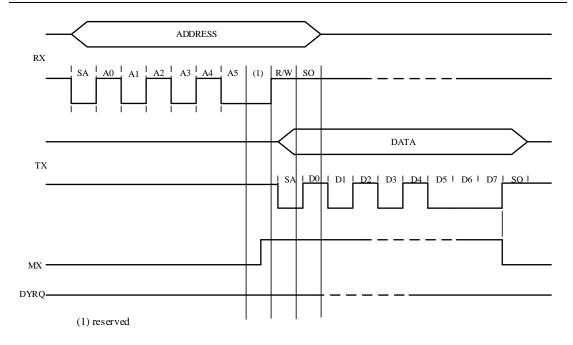


Figure 7-7 UART read timing

Read data: To read data to the Si522 using the UART interface, the structure shown in Table 7-9 must be used. The first byte sent defines both the mode and the address.

Table 7-9 Read data byte order

zanie. > ziena anun nyte eraer				
Pin	Byte0	Byte1		
RX	address	-		
TX	-	data 0		

Write data: To write data to the Si522 using the UART interface, the structure shown in Table 7-10 must be used. The first byte sent defines both the mode and the address.

Table 7-10 Write data byte order

Pin	Byte0	Byte1
RX	address0	data 0
TX	-	address0

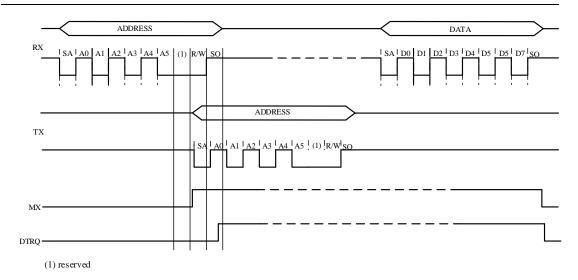


Figure 7-8 UART write timing

7.1.4 I²C

I² C is compatible

7.2 FIFO

An 64x8 bit FIFO buffer is used in the Si522. It buffers the input and output data stream between the host and the Si522's internal state machine. This makes it possible to manage data streams up to 64 bytes long without the need to take timing constraints into account.

The FIFO buffer input and output data bus is connected to the FIFODataReg register. Writing to this register stores one byte in the FIFO buffer and increments the internal FIFO buffer write pointer. Reading from this register shows the FIFO buffer contents stored in the FIFO buffer read pointer and decrements the FIFO buffer read pointer. The distance between the write and read pointer can be obtained by reading the FIFOLevelReg register.

The Si522 can generate two interrupts signal to know the condition of the FIFO buffer in time: HiAlertIRq 和 LoAlertIRq.

If the maximum number of WaterLevel[5:0] bits (as set in the WaterLevelReg register) or less are stored in the FIFO buffer, the HiAlert bit is set to logic 1. If it

enables interrupt, the HiAlertIRq will be generated.

$$HiAlert = (64 - FIFOLength) \leq WaterLevel$$

If the number of WaterLevel[5:0] bits (as set in the WaterLevelReg register) or less are stored in the FIFO buffer, the LoAlert bit is set to logic 1.If it enables interrupt, the LoAlertIRq will be generated.

7.3Interrupt request system

The Si522 indicates certain events by setting the Status1Reg register's IRq bit and, if activated, by pin IRQ.

Table7-11 Interrupt sources

Table/-11 Interrupt sources				
Interrupt flag	Interrupt source	Trigger action		
IRq	timer unit	the timer counts from 1 to 0		
TxIRq	transmitter	a transmitted data stream ends		
CRCIRq	CRC coprocessor	all data from the FIFO buffer has been processed		
RxIRq	receiver	a received data stream ends		
IdleIRq	ComIRqReg	command execution finishes		
HiAlertIRq	FIFO	the FIFO buffer is almost full		
LoAlertIRq	FIFO	the FIFO buffer is almost empty		
ErrIRq	Contactless UART	an error is detected		

7.4 Power reduction modes

7.4.1 Hard power-down

Hard power-down mode is enabled when pin NRSTPD is LOW. After exiting hard power-down mode, all registers will be reset.

7.4.2 Soft power-down mode

Soft Power-down mode is entered immediately after the CommandReg register's

PowerDown bit is set to logic 1. During soft power-down, all register values, the FIFO buffer content and the configuration keep their current contents.

7.4.3 Transmitter power-down mode

The Transmitter Power-down mode switches off the internal antenna drivers thereby, turning off the RF field. Transmitter power-down mode is entered by setting either the TxControlReg register's Tx1RFEn bit or Tx2RFEn bit to logic 0.

8 Command set

8.1 General description

The Si522 operation is determined by a state machine capable of performing a set of commands. A command is executed by writing a command code to the CommandReg register.

8.2 General characteristics

- 1) Except for the Transmive command, commands that require a data bit stream (or data byte stream) as input immediately process any data in the FIFO buffer. When the Transmive command is executed, the sending of data is initiated by the StartSend bit of the BitFramingReg register.
- 2) Commands that require a certain number of parameters are only processed when the correct number of parameters are received from the FIFO buffer.
- 3) At the beginning of the command, the FIFO buffer will not be automatically cleared. It supports writing command parameters and data bytes to the FIFO buffer, and then starting the command.
- 4) The host writes a new command code to the CommandReg register to interrupt the currently executing command, such as the Idle command.

8.3 Command overview

Table8-1 command overview

Command	Command code	Description
Command	Command code	Description
Idle	0000	no action, cancels current command execution
Mem	0001	Store 25 bytes in FIFO buffer
	0040	
Generate RandomID	0010	IDgenerates a 10-byte random ID number
CalcCRC	0011	activates the CRC coprocessor or performs a self test
	·	
Transmit	0100	transmits data from the FIFO buffer

NoCmdChange	0111	no command change, can be used to modify the CommandReg register bits without affecting the command, for example, the PowerDown bit
Receive	1000	activates the receiver circuits
Transceive	1100	transmits data from FIFO buffer to antenna and automatically activates the receiver after transmission
SoftReset	1111	resets the Si522

9 Register mapping

Table 9-1 Si522 register mapping

Address	Mnemonic	Reset Description	Bit Type Rese		Description
(Hex)	Willemonic	Dit	Турс	Value	Description
00h	reserved			00h	reserved for future use
01h	CommandReg			20h	starts and stops command execution
	reserved	7:6	ı		write 0 by default
	RcvOff	5	R/W		1: analog part of the receiver is switched off
					1: Soft Power-down mode entered
					0: Si522 starts the wake up procedure during which this
					bit is read as a logic 1; it is read as a logic 0 when the
	PowerDown	4	D		Si522 is ready.
					NOTE: The PowerDown bit cannot be set when the
					SoftReset command is activated
					activates a command based on the Command value;
	Command[3:0]	nand[3:0] 3:0			reading this register shows which command is executed
02h	CommIEnReg			80h	enable and disable interrupt request control bits
					1: signal on pin IRQ is inverted with respect to the
					Status1Reg register's IRq bit
					0: signal on pin IRQ is equal to the IRq bit; in
	IRqInv	7	R/W		combination with the DivIEnReg register's
					IRqPushPull bit, the default value of logic 1 ensures
					that the output level on pin IRQ is 3-state
				1: allows the transmitter interrupt request (TxIRq bit) to	
	TxIEn	6	R/W		be propagated to pin IRQ
				1: allows the receiver interrupt request (RxIRq bit) to	
	RxIEn	5	R/W		be propagated to pin IRQ
				1: allows the idle interrupt request (IdleIRq bit) to be	
IdleEn		4	R/W	W	propagated to pin IRQ

	HiAlertIEn	3	R/W		allows the high alert interrupt request (HiAlertIRq bit) to be propagated to pin IRQ
	LoAlertIEn	2	R/W		allows the low alert interrupt request (LoAlertIRq bit) to be propagated to pin IRQ
	ErrIEn	1	R/W		1: allows the error interrupt request (ErrIRq bit) to be propagated to pin IRQ
	TimerIEn	0	R/W		1: allows the timer interrupt request (TimerIRq bit) to be propagated to pin IRQ
03h	DivIEnReg			00h	enable and disable interrupt request control bits
	IRQPushPull	7	R/W		pin IRQ is a standard CMOS output pin pin IRQ is an open-drain output pin
	reserved	6:5	-		write 0 by default
	SiginActIEn	4	R/W		1: allows MFIN interrupt request to be propagated to pin IRQ
	reserved	3	-		reserved for future use
	CRCIEn	2	R/W		1: allows the CRC interrupt request, indicated by the DivIrqReg register's CRCIRq bit, to be propagated to pin IRQ
	reserved	1:0	-		reserved for future use
04h	CommIRqReg			14h	interrupt request bits
	Set1	7	W		1: indicates that the marked bits in the ComIrqReg register are set 0: indicates that the marked bits in the ComIrqReg register are cleared
	TxIRq	6	D		1: set immediately after the last bit of the transmitted data was sent out
	RxIRq	5	D		1: receiver has detected the end of a valid data stream if the RxModeReg register's RxNoErr bit is set to logic 1, the RxIRq bit is only set to logic 1 when data bytes are

					available in the FIFO
					1: if a command terminates, for example, when the
					CommandReg changes its value from any command to
					the Idle command;
					if an unknown command is started, the CommandReg
	IdleIRq	4	D		register Command[3:0] value changes to the idle state
					and the IdleIRq bit is set;
					if the microcontroller starting the Idle command does
					not set the IdleIRq bit
					1: the Status1Reg register's HiAlert bit is set the
	HiAlertIRq	3	D		HiAlertIRq bit stores this event and can only be reset as
	1				indicated by the Set1 bit in this register
			D		1: Status1Reg register's LoAlert bit is set the
	LoAlertIRq	2			LoAlertIRq bit stores this event and can only be reset as
	257 1137 1114	_			indicated by the Set1 bit in this register
	ErrIRq	1	D		1: any error bit in the ErrorReg register is set
	•				1: the timer decrements the timer value in register
	TimerIRq	0	D		TCounterValReg to zero
05h	DivIRqReg			x0h	interrupt request bits
					1: indicates that the marked bits in the DivIrqReg
					register are set
	Set2	7	W		0: indicates that the marked bits in the DivIrqReg
					register are cleared
	reserved	6:5	-		reserved for future use
					1: MFIN active
	SiginActIRq	4	D		this interrupt bit will be set to logic 1when detecting
					a rising edge or a falling edge
	reserved	3	-		reserved for future use
	CRCIRq	2	D		1: the CalcCRC command is active and all data is
		_			

-					
					processed
	reserved	1:0	-		reserved for future use
06h	ErrorReg			00h	error bits showing the error status of the last command executed
	WrErr	7	R		1: data is written into the FIFO buffer by the host if data is written into the FIFO buffer by the host during the time between sending the last bit on the RF interface and receiving the last bit on the RF interface
	TempErr	6	R		internal temperature sensor detects overheating, in which case the antenna drivers are automatically switched off
	reserved	5	-		reserved for future use
	BufferOvfl	4	R		1: the host or a Si522's internal state machine (e.g. receiver) tries to write data to the FIFO buffer even though it is already full
	CollErr	3	R		1: a bit-collision is detected cleared automatically at receiver start-up phase only valid during the bitwise anticollision at 106 kBd always set to logic 0 during communication protocols at 212 kBd, 424 kBd and 848 kBd
	CRCErr	2	R		1:the RxModeReg register's RxCRCEn bit is set and the CRC calculation fails automatically cleared to logic 0 during receiver start-up phase
	ParityErr	1	R		1: parity check failed automatically cleared during receiver start-up phase only valid for ISO/IEC 14443 A communication at 106 kBd
	ProtocolErr	0	R		1: SOF is incorrect automatically cleared during receiver start-up phase bit

					is only valid for 106 kBd
07h	Status1Reg			21h	communication status bits
	reserved	7	-		reserved for future use
					1: the CRC result is zero
					the CRCOk bit is undefined for data transmission and
					reception: use the ErrorReg register's CRCErr bit
	CRCOk	6	R		indicates the status of the CRC coprocessor, during
					calculation the value changes to logic 0, when the
					calculation is done correctly the value changes to logic
					1
					1: the CRC calculation has finished; only valid for the
	CRCReady	5	R		CRC coprocessor calculation using the CalcCRC
					command
					indicates if any interrupt source requests attention with
	IRq	4	R		respect to the setting of the interrupt enable bits: see the
					ComIEnReg and DivIEnReg registers
					1: MFRC523's timer unit is running, i.e. the timer will
					decrement the TCounterValReg register with the next
					timer clock
	TRunning	3	R		NOTE: in gated mode, the TRunning bit is set to logic
					1 when the timer is enabled by TModeReg register's
					TGated[1:0] bits; this bit is not influenced by the gated
					signal
	reserved	2	-		reserved for future use
					1: the alert level for the number of bytes in the FIFO
					buffer (FIFO Length[6:0]) is:
	HiAlert	1	R		HiAlert = (64-FIFOLength)≤WaterLevel
					Example:
					FIFO Length = 60, WaterLevel = 4 -> HiAlert = 1

					FIFO Length = 59, WaterLevel = 4 -> HiAlert = 0
08h	LoAlert Status2Reg	0	R	00h	1: the alert level for number of bytes in the FIFO buffer (FIFO Length[6:0]) is: LoAlert = FIFOLength≤WaterLevel Example: FIFO Length = 4, WaterLevel = 4 → LoAlert = 1 FIFO Length = 5, WaterLevel = 4 → LoAlert = 0 receiver and transmitter status bits
					1: clears the temperature error if the temperature is
	TempSensClear	7	R/W		below the alarm limit of 125 °C
	reserved	6:3	-		reserved
	ModemState[2:0]	2:0	R		shows the state of the transmitter and receiver state machines: 000: idle 001: wait for the BitFramingReg register's StartSend bit 010: TxWait: wait until RF field is present if the TModeReg register's TxWaitRF bit is set to logic 1. The minimum time for TxWait is defined by the TxWaitReg register 011: transmitting 100: RxWait: wait until RF field is present if the TModeReg register's TxWaitRF bit is set to logic 1. The minimum time for RxWait is defined by the RxWaitReg register 101: wait for data 110: receiving
09h	FIFODataReg			xxh	input and output of 64 byte FIFO buffer
	FIFOData[7:0]	7:0	D		data input and output port for the internal 64-byte FIFO

				00h	adjustments for bit-oriented frames
	RxLastBits[2:0]	2:0	R		byte. If this value is zero, the whole byte is valid
					indicates the number of valid bits in the last received
	reserved	5:3	-		reserved for future use
ļ	TStartNow	6	W		reading this bit always returns it to 0
					1: timer starts immediately.
l	TStopNow	7	W		reading this bit always returns it to 0
					1: timer stops immediately.
0Ch	ControlReg			10h	miscellaneous control registers
<u> </u>					FIFO buffer
<u> </u>			R/W		equal to, or less than the WaterLevel[5:0] bits in the
		6:0			Status1Reg register's LoAlert bit is set to logic 1 if
l					WaterLevel[5:0] bits
<u> </u>	WaterLevel[5:0]				equal to, or less than the defined number of
l					remaining number of bytes in the FIFO buffer space is
<u> </u>					Status1Reg register's HiAlert bit is set to logic 1 if the
					overflow or underflow:
	15501104	,.0			defines a warning level to indicate a FIFO buffer
VDII	reserved	7:6	_	VOII	reserved for future use
0Bh	WaterLevelReg			08h	level for FIFO underflow and overflow warning
	THOLEVEI[0:0]	0.0	K		reading decrements the FIFOLevel value
<u> </u>	FIFOLevel[6:0]	6:0	R		Writing to the FIFODataReg register increments and
					indicates the number of bytes stored in the FIFO buffer.
	FlushBuffer	7	W		bit. Reading this bit always returns 0
l					1: immediately clears the internal FIFO buffer's read and write pointer and ErrorReg register's BufferOvfl
0Ah	FIFOLevelReg			00h	number of bytes stored in the FIFO buffer
					converter for all serial data stream inputs and outputs
<u> </u>					buffer. FIFO buffer acts as parallel in/parallel out

	StartSend	7	W		1: starts the transmission of data only valid in combination with the Transceive command
	RxAlign[2:0]	6:4	R/W		used for reception of bit-oriented frames: defines the bit position for the first bit received to be stored in the FIFO buffer example: 0: LSB of the received bit is stored at bit position 0, the second received bit is stored at bit position 1 1: LSB of the received bit is stored at bit position 1, the second received bit is stored at bit position 2 7: LSB of the received bit is stored at bit position 7, the second received bit is stored at bit position 7, the second received bit is stored in the next byte that follows at bit position 0 these bits are only to be used for bitwise anticollision at 106 kBd, for all other modes they are set to 0
	reserved	3	-		reserved for future use
	TxLastBits[2:0]	2:0	R/W		used for transmission of bit oriented frames: defines the number of bits of the last byte that will be transmitted. 000b indicates that all bits of the last byte will be transmitted
0Eh	CollReg			xxh	bit position of the first bit-collision detected on the RF interface
	ValuesAfterColl	7	R/W		0: all received bits will be cleared after a collision only used during bitwise anticollision at 106 kBd, otherwise it is set to logic 1
	reserved	6	-		reserved for future use
	CollPosNotValid	5	R		1: no collision detected or the position of the collision is out of the range of CollPos[4:0]
	CollPos[4:0]	4:0	R		shows the bit position of the first detected collision in a received frame only data bits are interpreted example:

					00h: indicates a bit-collision in the 32nd bit
					01h: indicates a bit-collision in the 1st bit
					08h: indicates a bit-collision in the 8th bit
					these bits will only be interpreted if the
					CollPosNotValid bit is set to logic 0
0Fh	reserved			08h	reserved for future use
10h	reserved			00h	reserved for future use
11h	ModeReg			3Fh	defines general modes for transmitting and receiving
					1: CRC coprocessor calculates the CRC with MSB
					first. In the CRCResultReg register the values for the
	MSBFirst	7	R/W		CRCResultMSB[7:0] bits and the CRCResultLSB[7:0]
					bits are bit reversed
					NOTE: during RF communication this bit is ignored
	reserved	6	-		reserved for future use
					1: transmitter can only be started if an RF field is
	TxWaitRF	5	R/W		generated
	reserved	4	-		reserved for future use
	PolSigin	3	R/W		define the polarity of pin MFIN
	reserved	2	-		reserved for future use
					defines the preset value for the CRC coprocessor for the
					CalcCRC command
					NOTE: during any communication, the preset values
					are selected automatically according to the definition of
	CRCPreset	1:0	R/W		bits in the RxModeReg and TxModeReg registers
					00: 0000h
					01: 6363h
					10: A671h
					11: FFFFh
12h	TxModeReg			00h	defines transmission data rate and framing

					1: enables CRC generation during data transmission
	TxCRCEn	7	R/W		NOTE: it can only be set to logic 0 at 106 kBd
					defines the bit rate during data transmission. Si522
					handles transmission rates up to 848 kBd
					000:106kBd
	TxSpeed[2:0]	6:4	D		001:212kBd
					010:424kBd
					011:848kBd
					100-111: reserved
	InvMod	3	R/W		1: modulation of transmitted data is inverted
	reserved	2:0	-		reserved
13h	RxModeReg			00h	defines transmission data rate and framing
			R/W		1: enables CRC generation during data transmission
	RxCRCEn	7			NOTE: it can only be set to logic 0 at 106 kBd
		6:4	D		defines the bit rate during data transmission. Si522
					handles transmission rates up to 848 kBd
					000:106kBd
	RxSpeed[2:0]				001:212kBd
					010:424kBd
					011:848kBd
					100-111: reserved
	RxNoErr	3	R/W		1: modulation of transmitted data is inverted
	RxMultiple	2	R/W		reserved
	reserved	1:0	-		defines transmission data rate and framing
14h	TxControlReg			80h	controls the antenna driver pins TX1 and TX2
	I T ADDO		D //**		1: output signal on pin TX2 inverted when driver TX2
	InvTx2RFOn	7	R/W		is enabled
					1: output signal on pin TX1 inverted when driver TX1
	InvTx1RFOn	6	R/W		is enabled

	InvTx2RFOff	5	R/W		1: output signal on pin TX2 inverted when driver TX2 is disabled
	InvTx1RFOff	4	R/W		1: output signal on pin TX1 inverted when driver TX1 is disabled
	Tx2CW	3	R/W		output signal on pin TX2 continuously delivers the unmodulated 13.56 MHz energy carrier Tx2CW bit is enabled to modulate the 13.56 MHz energy carrier
	reserved	2	-		reserved for future use
	Tx2RFEn	1	R/W		1: output signal on pin TX2 delivers the 13.56 MHz energy carrier modulated by the transmission data
	Tx1RFEn	0	R/W		1: output signal on pin TX1 delivers the 13.56 MHz energy carrier modulated by the transmission data
15h	TxAutoReg			00h	controls the setting of the transmission modulation
	reserved	7	-		reserved for future use
	Force100ASK	6	R/W		1: forces 100 % ASK modulation independently of the ModGsPReg register setting
	reserved	5:0	-		reserved for future use
16h	TxSelReg			10h	selects the internal sources for the antenna driver
	reserved	7:6	-		reserved for future use
	DriverSel[1:0]	5:4	R/W		selects the input of drivers TX1 and TX2 00: 3-state; in soft power-down the drivers are only in 3-state mode if the DriverSel[1:0] value is set to 3-state mode 01: modulation signal (envelope) from the internal encoder, Miller pulse encoded 10: reserved 11: HIGH; the HIGH level depends on the setting of bits InvTx1RFOn/InvTx1RFOff and

					InvTx2RFOn/InvTx2RFOff
	SigOutSel	3:0	R/W		select input signal to pin MFOUT
17h	RxSelReg			84h	selects internal receiver settings
	UARTSel[1:0]	7:6	R/W		selects the input of the contactless UART 00: constant LOW 01: Manchester with subcarrier from pin MFIN 10: modulated signal from the internal analog module, default 11: reserved
	RxWait[5:0]	5:0	R/W		after data transmission the activation of the receiver is delayed for RxWait bit-clocks, during this 'frame guard time' any signal on pin RX is ignored this parameter is ignored by the Receive command all other commands, such as Transceive use this paramet the counter starts immediately after the external RF field is switched on
18h	RxThresholdReg				selects thresholds for the bit decoder
	MinLevel[3:0]	7:4	R/W		defines the minimum signal strength at the decoder input that will be accepted. If the signal strength is below this level it is not evaluated
	reserved	7:4	-		reserved for future use
	CollLevel[2:0]	3:0	R/W		defines the minimum signal strength at the decoder input that must be reached by the weaker half-bit of the Manchester encoded signal to generate a bit-collision relative to the amplitude of the stronger half-bit
19h	DemodReg				defines demodulator settings
	AddIQ[1:0]	7:6	R/W		defines the use of I-channel and Q-channel during reception NOTE: the FixIQ bit must be set to logic 0 to enable

					the following settings:
					00: selects the stronger channel
					01: selects the stronger channel and freezes the
					selected channel during communication
					10: reserved
					11: reserved
					1: if the bits of AddIQ are set to X0, the reception is
	FixIQ	5	R/W		fixed to I-channel if the bits of AddIQ are set to X1, the
					reception is fixed to Q-channel
	TPrescalEven	4	R/W		set the frequency mode
					changes the time-constant of the internal PLL during
	TauRcv[1:0]	3:2	R/W		data reception
					changes the time constant of the internal PLL during
	TauSync[1:0]	1:0	R/W		burst
1Ah	reserved			00h	reserved for future use
1Bh	reserved			00h	reserved for future use
1Ch	MifNFCReg			62h	controls communication transmit parameters
	reserved	7:2	-		reserved
	TxWait	1:0	R/W		defines the additional response time.
1Dh	ManualRCVReg			00h	controls communication receive parameters
	reserved	7:5	-		reserved for future use
					1: generation of the parity bit for transmission and the
	ParityDisable	4	R/W		parity check for receiving is switched off. The received
					parity bit is handled like a data bit
	reserved	3:0	-		reserved for future use
1Eh	reserved			00h	reserved for future use
1Fh	SerialSpeedReg			EBh	select speed of serial UART interface
	BR_T0[2:0]	7:5	R/W		adjust transfer speed, see chapter 7.1.3 for more details
	BR_T1[4:0]	4:0	R/W		adjust transfer speed, see chapter 7.1.3 for more details

20h	reserved			00h	reserved for future use	
21h	CRCResultReg (higher bits)			FFh	shows the MSB and LSB values of the CRC calculation	
	CRCResultMSB [7:0]	7:0	R		shows the value of the CRCResultReg register's most significant byte. Only valid if Status1Reg register's CRCReady bit is set to logic 1	
22h	CRCResultReg (lower bits)			FFh	shows the MSB and LSB values of the CRC calculation	
	CRCResultLSB [7:0]	7:0	R		shows the value of the least significant byte of the CRCResultReg register. Only valid if Status1Reg register's CRCReady bit is set to logic 1	
23h	GsNOffReg			88h	Selects the conductance for the N-driver of the antenna driver pins TX1 and TX2 when the driver is switched off.	
	CWGsNOff	7:4	R/W		The value of this register defines the conductance of the output N-driver during times of no modulation. Note: The conductance value is binary weighted. During soft Power-down mode the highest bit is forced to 1. The value of the register is only used if the driver is switched off. Otherwise the bit value CWGsNOn of register GsNOnReg is used.	
	ModGsNOff	3:0	R/W		The value of this register defines the conductance of the output N-driver for the time of modulation. This may be used to regulate the modulation index. Note: The conductance value is binary weighted. During soft Power-down mode the highest bit is forced to 1. The value of the register is only used if the driver is switched off. Otherwise the bit value ModGsNOn of register GsNOnReg is used	
24h	ModWidthReg			26h	controls the ModWidth setting	

	ModWidth[7:0]	7:0	R/W		defines the width of the Miller modulation as multiples of the carrier frequency (ModWidth $+\ 1\ /\ $ felk). The maximum value is half the bit period	
25h	reserved			87h	reserved for future use	
26h	RFCfgReg			48h	configures the receiver gain	
	reserved	7	-		reserved for future use	
	RxGain[2:0]	6:4	R/W		defines the receiver's signal voltage gain factor: 000: 18dB 001: 23dB 010: 18dB 011: 23dB 100: 33dB 101: 38dB 111: 48dB	
	reserved	3:0	-		reserved for future use	
27h	GsNOnReg			88h	selects the conductance of the antenna driver pins TX1 and TX2 for modulation	
	CWGsNOn	7:4	R/W		and TX2 for modulation The value of this register defines the conductance of the output N-driver during times of no modulation. This may be used to regulate the output power and subsequently current consumption and operating distance. NOTE: The conductance value is binary weighted. NOTE: During soft Power-down mode the highest bit is forced to 1. NOTE: This value is only used if the driver TX1 or TX2 are switched on. Otherwise the value of the bits CWGsNOff of register GsNOffReg is Used.	

					,	
	ModGsNOn	3:0	R/W		The value of this register defines the conductance of the output N-driver for the time of modulation. This may be used to regulate the modulation index. NOTE: The conductance value is binary weighted. NOTE: During soft Power-down mode the highest bit is forced to 1. NOTE: This value is only used if the driver TX1 or Tx2 are switched on. Otherwise the value of the bits	
					ModsNOff of register GsNOffReg is used.	
28h	CWGsPReg			20h	defines the conductance of the p-driver output when not active	
	reserved	7:6	-		Reserved for future use	
	CWGsP	5:0	R/W		The value of this register defines the conductance of the output P-driver. This may be used to regulate the output power and subsequently current consumption and operating distance. NOTE: The conductance value is binary weighted. NOTE: During soft Power-down mode the highest bit is forced to 1.	
29h	ModGsPReg			20h	defines the conductance of the p-driver output during modulation	
	reserved	7:6	-		Reserved for future use	
	ModGsP	5:0	R/W		The value of this register defines the conductance of the output P-driver for the time of modulation. This may be used to regulate the modulation index. NOTE: The conductance value is binary weighted. NOTE: During soft Power-down mode the highest bit is forced to 1.	
2Ah	TModeReg			00h	defines settings for the internal timer	

	TAuto	7	R/W		1: the timer starts automatically at the end of the transmission in all communication modes at all speeds or when InvTxnRFOn bits are set to logic 1 and the RF field is switched on 0: indicates that the timer is not influenced by the protocol	
	TGated[1:0]	6:5	R/W		The internal timer is running in gated mode. Note: In the gated mode, the bit TRunning is 1 when the timer is enabled by the register bits. This bit does not influence the gating signal. 00: Non gated mode 01: Gated by pin MFIN 10: Gated by AUX1 11: -	
	TAutoRestart	4	R/W		1: timer automatically restarts its count-down from the 16-bit timer reload value instead of counting down to zero 0: timer decrements to 0 and the ComIrqReg register's TimerIRq bit is set to logic 1	
	TPrescaler_Hi [3:0]	3:0	R/W		defines the higher 4 bits of the TPrescaler value	
2Bh	TPrescalerReg			00h	defines the lower 8 bits of the TPrescaler value	
	TPrescaler_Lo [7:0]	7	R/W		defines the lower 8 bits of the TPrescaler value	
2Ch	TReloadReg (higher bits)			00h	defines the 16-bit timer reload value	
2Dh	TReloadReg (lower bits)			00h	defines the 16-bit timer reload value	
2Eh	TCounterValReg (higher bits)			xxh	timer value higher 8 bits	

2Fh	TCounterValReg		xxh	timer value lower 8 bits
	(lower bits)			

NOTE: R/W: Read/Write; D: Dynamic; R: Only Read; W: Only Write;

10 Typical application schematic

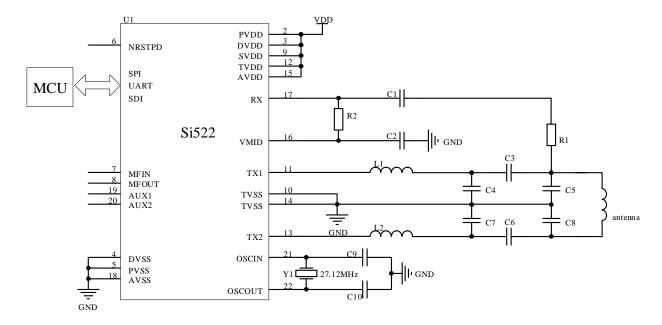


Figure 10-1 Typical application diagram 1

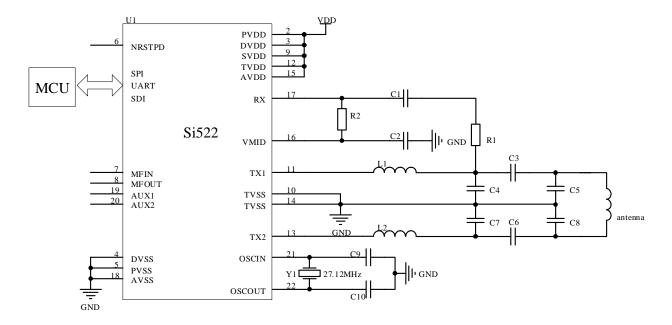
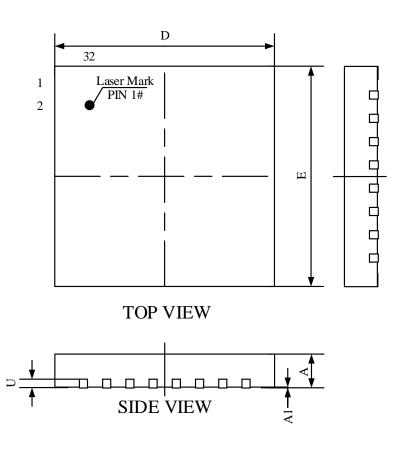



Figure 10-2 Typical application diagram 2

NOTE: When working with button batteries, it is recommended to add a $100\mu F$ large capacitor to the power supply;

11 Package outline

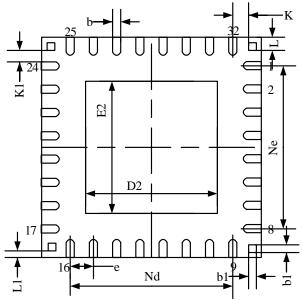


Figure 11-1 Package (QFN32L)

Table11-1 Package outline

Table11-1 Package outline							
SYMBOL	MILLIMETER						
	MIN	NOM	MAX				
A	0.70	0.75	0.80				
A1	0	0.2	0.05				
b	0.20	0.25	0.30				
b1	0.20	0.25	0.30				
С	0.203REF						
D	4.90	5.00	5.10				
D2	3.40	3.50	3.60				
e	0.50BSC						
Nd	3.5BSC						
Ne	3.5BSC						
Е	4.90	5.0	5.10				
E2	3.40	3.50	3.60				
L	0.35	0.40	0.45				
L1	0.15REF						
K	0.35REF						
K1	0.225REF						

12 Version information

Version	Modified date	Modified content
Rev1.0	2023/11/13	First draft
Rev1.1	2024/03/07	Description of GsNOnReg,CWGsPReg,ModGsPReg added

13 Order information

Package marking

Si522 ABBCDEE

Si522: chip code

A: package date code, 5 represents year 2020

BB: week of sending out processing, 42 represents in the year A the 42th week

C: package factory code, A, HT, NJ or WA, can also abbreviated as A, H, N or W

D: test factory code, A, Z or H

EE: production batch code

Table13-1 Si522 order example

order code	package	container	minimum
Si522-Sample	5×5mm 32-pin QFN	Box/Tube	5
Si522	5×5mm 32-pin QFN	Tape and reel	4K

14 Technical Support and Contact information

Nanjing Zhongke Microelectronic Industry Technology Research Institute Co., Ltd Technical Support Center

Phone: 025-68517780

Address: Room 201, Building B, Research Zone 3, Xuzhuang Software Park, Xuanwu District,

Nanjing, Jiangsu, China

Website: http://www.csm-ic.com

Sales and Marketing

Phone: 13645157034, 13645157035

Email: sales@csmic.ac.cn

Technical Support

Phone: 13645157034

Email: supports@csmic.ac.cn